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Abstract

Gene Ontology (GO) consists of three structured controlled vocabularies, i.e., GO domains, developed for describ-

ing attributes of gene products, and its annotation is crucial to provide a common gateway to access different model

organism databases. This paper explores an effective application of text categorization methods to this highly prac-

tical problem in biology. As a first step, we attempt to tackle the automatic GO annotation task posed in the Text

Retrieval Conference (TREC) 2004 Genomics Track. Given a pair of genes and an article reference where the genes

appear, the task simulates assigning GO domain codes. We approach the problem with careful consideration of the

specialized terminology and pay special attention to various forms of gene synonyms, so as to exhaustively locate

the occurrences of the target gene. We extract the words around the spotted gene occurrences and used them to

represent the gene for GO domain code annotation. We regard the task as a text categorization problem and adopt

a variant of kNN with supervised term weighting schemes, making our method among the top-performing systems

in the TREC official evaluation. Furthermore, we investigate different feature selection policies in conjunction with

the treatment of terms associated with negative instances. Our experiments reveal that round-robin feature space

allocation with eliminating negative terms substantially improves performance as GO terms become specific.

Keywords
Text Categorization, Gene Ontology Annotation, Supervised Term Weighting, Feature Selection Policy, Automatic

Database Curation, Genomic Information Retrieval
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Figure 1. Structure of Gene Ontology.

1 Introduction

Given the intense interest and the fast growing literature, biomedicine is an attractive domain for exploration of intel-

ligent information processing techniques, such as information retrieval (IR), information extraction, and information

visualization. Hence, it has been increasingly drawing much attention of researchers in IR and other related research

communities (Azuaje & Dopazo, 2005; Hirschman et al., 2002; Shatkay & Feldman, 2003), which in part resulted

in a track at Text Retrieval Conference (TREC)1 solely dedicated to the biomedical domain, namely, the Genomics

Track (Hersh, 2002, 2004; Hersh & Bhuptiraju, 2003; Hersh et al., 2004, 2005). This work is motivated by one of

the task challenges at the track and introduces a successful application of general text categorization and IR methods

to this evolving field of research targeting biomedical text.

In the post-genomic era, one of the major activities in molecular biology is to determine the precise functions

of individual genes or gene products, which has been producing a large number of publications with the help of

high throughput gene analyses. To structure the information related to gene functions scattered over the literature, a

great deal of efforts have been made to annotate articles by using the Gene Ontology2 (GO) terms. GO (The Gene

Ontology Consortium, 2000) was first developed as a collaborative project among three model organism databases,

FlyBase, the Saccharomyces Genome Database, and the Mouse Genome Database, in order to facilitate uniform

queries across the different databases. GO consists of three structured controlled vocabularies (ontologies) that

describe gene products in terms of their associated biological process (BP), cellular component (CC), and molecular

function (MF). The ontologies are structured—under the top three nodes—as directed acyclic graphs, which allow a

child term to have multiple parents. Figure 1 illustrates the structure of GO.

Because of the large number of publications and specialized content, GO annotation requires extensive human

efforts and substantial domain knowledge, usually conducted by experts. However, Baumgartner et al. (2007) re-

ported that current manual curation for GO annotation would never complete at the current rate of production through

careful analyses based on a metric known as the found/fixed graph from software engineering. Thus, there is a po-

1http://trec.nist.gov/
2http://www.geneontology.org/
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tential need to automate or semi-automate GO annotation, which could greatly alleviate the human curation. This

was one of the primary objectives pursued at the Genomics Track 2004 (Hersh et al., 2004).

The Genomics Track consisted of two tasks: ad hoc retrieval and categorization tasks. For the former, given

50 topics obtained through interviews with real research scientists, the participants were required to find relevant

documents from 10 years’ worth of MEDLINE data. The latter task, which is our focus in this paper, was composed

of two sub-tasks; one was called the triage task and the other the annotation task. Both tasks mimicked some parts

of the GO annotation process currently carried out by human experts at Mouse Genome Informatics (MGI) initiative.

In brief, the goal of the triage task was to correctly identify whether an input article contains experimental evidence

that warrants GO annotation regardless of particular GO terms. The annotation task was the next step to the triage

decision, and the primary goal was to correctly assign GO domain codes, i.e., MF, BP, and CC (not the actual GO

terms) or not to assign them, i.e., negative, for each of the given genes that appear in the article.3 Note that there

may be more than one gene associated with an article and there may be more than one domain code assigned to a

gene. The secondary goal of the annotation task—although not discussed in this paper—was to identify the correct

GO evidence code that indicates the type of evidence for the assigned domain code. Compared to the other tasks

which attracted numbers of runs and participants, the latter part of the annotation task was challenged by only two

research groups including ours (Seki et al., 2004), which partly indicates the difficulty of the task.

The triage task can be seen as a standard text categorization problem to classify an input article into one of the

predefined categories (positive and negative), while the annotation task requires to classify not an article as a whole

but each given gene appearing in the article. In other words, each 〈article, gene〉 pair is to be independently treated

and classified even when two (or more) genes appear in a single article. We address the problem by extracting

document fragments that are likely to contain the gene in question by gene name expansion and a flexible term

matching scheme. The resulting document fragments are then used for representing the particular gene. For classifi-

cation, we use a variant of k-Nearest Neighbor (kNN) classifiers with a supervised term weighting scheme (Debole

& Sebastiani, 2003) which consider word distributions in different categories.

This paper focuses on an application of general text categorization and IR techniques to the domain-specific

problem requiring the involvement of an expert and it typically is a highly intellectual process demanding a care-

ful consideration of the properties of the terminology in biomedicine. In the following, Section 2 introduces our

proposed framework for GO domain code annotation in detail, and then Section 3 describes the data and evalua-

tion measures used for our experiments. In Section 4, we show the validity of our framework through a number

of experiments with various different settings. In addition, we compare different feature selection policies to study

their effects on GO annotation. Section 5 reports an application of our framework to the triage task as well. After

Section 6 discussing the related work, Section 7 concludes this paper with a brief summary of our approach and

major findings, and possible future directions.

3Assuming perfect triage decision, there would not be negative cases at the annotation stage. However, there were negative instances

purposefully included in the TREC data (see Section 3.2).
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2 Methods

This section details our proposed framework for automatic GO domain code annotation. Hereafter, we will refer to

GO domain code annotation as “GO annotation” for short unless otherwise noted. First, Section 2.1 describes how

input is processed and represented in a vector space, and then Section 2.2 presents a classifier to be used for GO

annotation.

2.1 Document representation

2.1.1 Identification of relevant paragraphs

GO annotation needs to be made not for each input article but for each gene for which there is experimental evidence

that warrants GO annotation. Therefore, each 〈article, gene〉 pair can be treated as a “document” or “text” in the

sense of text categorization. For this purpose, we propose a simple but effective approach to extract only the text

fragments that are likely to contain the gene in question and treat a set of the extracted text fragments as a “document”

to represent the 〈article, gene〉 pair. This process can be broken down into gene name expansion and gene name

identification, each explained in the following.

Gene name expansion Gene name expansion refers to a process to associate synonyms with a given gene name.

Gene names (and their products) are known to have several types of synonyms including aliases, abbreviations, and

gene symbols (Sehgal & Srinivasan, 2006). For instance, “membrane associated transporter protein” (GeneID4:

22293) can be referred to as underwhite, dominant brown, Matp, uw, Dbr, bls, Aim1, etc. Therefore, all of these

names should be considered to identify text fragments mentioning the gene. To obtain such synonyms, we used

two sources of information: the article itself and a gene name dictionary. As described later in Section 3, the input

article is annotated with SGML tags and there are two relevant fields, <KEYWORD> and <GLOSSARY>, in which a gene

name and its synonym may be explicitly stated.5 An example is given in Figure 2, where five pairs of entity names

and their abbreviations are defined. If the given gene is found in the pairs, we use the information to expand the

gene name. Incidentally, we also examined the use of body text because gene name abbreviations often appear with

parentheses immediately following the official names (Schwartz & Hearst, 2003). However, it slightly degraded

classification in our preliminary experiments and thus was not used thereafter.

As another source of gene name expansion, a gene name dictionary was automatically compiled from existing

databases. For this work, we experimentally used the SWISS-PROT (O’Donovan et al., 2002) and LocusLink (Pruitt

& Maglott, 2001) databases.6 The resulting name dictionary contains 493,473 records, where each record has a

4From the Entrez Gene database available at http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
5The DTD is found at http://highwire.stanford.edu/about/dtd/
6LocusLink has been superseded by Entrez Gene.
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<GLOSSARY>

<DEFLIST>

<TERM ID="G1">MHC</TERM>

<DD><P>major histocompatibility complex</P></DD>

<TERM ID="G2">Hsp</TERM>

<DD><P>heat shock protein</P></DD>

<TERM ID="G3">T4Hsp10</TERM>

<DD><P>bacteriophage T4 Hsp10</P></DD>

<TERM ID="G4">MES</TERM>

<DD><P>4-morpholineethanesulfonic acid</P></DD>

<TERM ID="G5">E-64</TERM>

<DD><P>trans-epoxysuccinyl-<SC>l</SC>-leucylamido-(4-guanidino)butane</P></DD>

</DEFLIST>

</GLOSSARY>

Figure 2. An excerpt of a <GLOSSARY> field from an SGML file (bc0102000155.gml in the TREC 2004 Genomics Track

data set for GO annotation task; see Section 3.2 for detail).

gene/protein name as an index and lists its synonyms. Hereafter, we use the word “gene names” to refer to all of

official names, aliases, abbreviations, and gene symbols.

It is often the case that gene name dictionaries automatically compiled from existing databases, such as ours,

are noisy due to multi-sense gene names, inconsistent format in the databases, etc. Therefore, it usually requires

manual curation to build a high-quality dictionary (Egorov et al., 2004; Hanisch et al., 2003), which is important for

general-purpose gene name recognition systems. Fortunately, the quality of a dictionary would not be as important

in our application, because even if the dictionary provides wrong gene names as synonyms of a given gene, those

wrong names are unlikely to appear in an article as they are irrelevant to the given target gene with which the article

is associated.

Gene name identification The next step is to find text fragments mentioning the gene in question, where we

considered a paragraph as a unit of analysis. Here, the problem is that, besides synonyms, gene names often have

many variants due to arbitrary use of special symbols, white space, and capital and small letters (Cohen et al., 2002;

Cohen, 2005; Fang et al., 2006; Morgan et al., 2007). To tolerate these minor differences in identifying gene names,

both gene names and text were normalized using the following heuristic rules partly derived from the work by Cohen

et al. (2002). Note that the actual order of applying the rules does not make difference.

• Replace all special symbols (non-alphanumeric characters) with space (e.g., NF-kappa→ NF kappa)
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• Insert space between different character types, such as alphabets and numerals (e.g., Diet1→ Diet 1)

• Insert space between Greek alphabets and other words (e.g., kappaB→ kappa B)

• Lowercase all characters

Then, each paragraph (identified by SGML tags) in the article was scanned if it contained any of the gene names

associated with the gene in question. Note that section titles were appended to each paragraph since they are often

descriptive. In addition, if the paragraph referred to figures and/or tables for the first time in the article, their captions

were also appended to the paragraph.

We have so far obtained gene name synonyms and normalized both gene names and text to facilitate gene name

identification. However, there remains another problem. That is, gene names are frequently written in slightly

different forms with extra words, different word order, etc. For example, “peroxisome proliferator activated receptor

binding protein” (GeneID: 19014) may be referred to as “peroxisome proliferator activator receptor (PPAR)-binding

protein” where underlines indicate the differences. To deal with the problem, we used approximate word matching.

To be precise, for each target gene name (denoted as gene) and each candidate which mentions any word composing

the gene name (denoted as candidate), a word-overlap score defined below was computed.

Overlap(gene, candidate) =
M − α · U

N + β
(1)

where M and U represent the number of matching and unmatching words, respectively; α is a penalty for unmatching

words (set to 0.3); N is the number of words composing the gene name; and β penalizes shorter gene names (set to 2).

If any candidate associated with a paragraph had a score exceeding a predefined threshold (set to 0.3), the paragraph

was used to represent the 〈article, gene〉 pair after stopword removal and stemming by the PubMed stopword list7 and

Lovins stemmer (Lovins, 1968), respectively. For instance, the example of “peroxisome. . .” above has five matching

and two unmatching words, resulting in an overlap score of 0.55. Because it is greater than the threshold (0.3), the

paragraph containing the candidate is extracted and used in part to represent the corresponding 〈article, gene〉 pair.

Incidentally, the values of the parameters were arbitrarily determined based on our preliminary experiments using

the training data (see Section 3 for the description of the data set).

Here, we treated a paragraph as a unit of extraction since it is thought to be organized in a single topic and seems

to be an appropriate unit. In Section 4.2, we will examine other alternatives.

2.1.2 MeSH terms

Along with the article itself, we took advantage of external resources, specifically, Medical Subject Heading

(MeSH)8 terms assigned to the article. MeSH is a controlled vocabulary developed at the National Library of

Medicine (NLM) for indexing biomedical articles and is annotated by human experts at NLM.

7http://www.ncbi.nlm.nih.gov/entrez/query/static/ help/pmhelp.html
8http://www.nlm.nih.gov/mesh/
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For each input article, all the associated MeSH terms were obtained from the MEDLINE database9 using Entrez

Utilities.10 Because these MeSH terms are annotated with the article (not with particular genes in it), they were

added to every document (i.e., a set of paragraphs) representing a pair of the article and any gene coupled with it.

Note that a special symbol MESH+ was concatenated to each MeSH term so as to distinguish MeSH from other terms.

2.1.3 Feature selection

Feature selection identifies the features (terms) that are more informative in terms of classification according to

some statistic measure, which not only reduces the size of the feature space but often improves classification (Yang

& Pedersen, 1997). For this work, we adopted the chi-square statistic and compute it for every term composing the

“documents” obtained through the previous steps.

Chi-square statistic of term t in class c is defined as:

χ2(t, c) =
N(AD −CB)2

(A + C) (B + D) (A + B) (C + D)
(2)

where c is one of the GO domain codes (BP, MF, and CC) or negative (NEG), A is the number of documents

containing term t in class c, B is the number of documents containing t that are not in c, C is the number of

documents not containing t in c, D is the number of documents not containing t in classes that are not in c, and

N is the total number of documents. For each term t, chi-square statistic was computed for every class, and the

maximum score was taken as the chi-square statistic for term t; that is, χ2(t) = maxi χ
2(t, ci). Only the top n terms

with higher chi-square were selected and used for the following processes. We empirically chose n=3000 based on

our preliminary experiments. It should be mentioned that, for real-world applications, a smaller feature set would

be preferred from the view point of computer resources and processing time. However, this work pursues highest

performance possibly obtained by the proposed framework, where those issues are secondary.

2.1.4 Term weighting

Each 〈article, gene〉 pair is associated with a set of selected terms in the preceding steps. To apply kNN for classifi-

cation as described in the next section, we convert it to a term vector using the classic vector space model (Salton &

McGill, 1983) with conventional TFIDF (term frequency-inverse document frequency) defined as:

TFIDF(t, d) = (1 + log TF(t, d)) · log
N

DF(t)
(3)

where TF(t, d) is a term frequency of term t within document d, N is the total number of documents, and DF(t) is

the number of documents in which term t appears. In cases where TF(t, d) = 0, TFIDF(t, d) is defined to be 0.

9http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
10http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils help.html
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We also examine another term weighting scheme, so called supervised term weighting, proposed by Debole &

Sebastiani (2003). It takes into account pre-labeled class information in training data and reuses statistic computed

in the feature selection step (e.g., chi-square statistics, information gain, etc.) in place of IDF. We use TFCHI which

is defined as a product of TF and chi-square statistic. Specifically, we test two variants of the scheme, denoted as

TFCHI1 and TFCHI2, respectively.

TFCHI1(t, d) = (1 + log TF(t, d)) · χ2(t)

TFCHI2(t, d) = (1 + log TF(t, d)) · log χ2(t)
(4)

2.2 kNN classifiers

We use a variant of kNN classifiers to assign GO domain codes to each pair of article and gene. kNN is an instance-

based classifier and is reported as one of the best classifiers for text categorization in both newswire and medical

domains (Yang & Liu, 1999). In brief, it classifies input v to one or more predefined classes depending on what

classes its neighbors belong to. The decision rule can be expressed as

if Score(c, v) =
∑

i

sim(v, nc,i) > tc, then assign c to v (5)

where nc is the k nearest neighbors having class c ∈ {BP, MF, CC}, tc is a per-class threshold, and sim(v, nc,i) returns

cosine similarity between the arguments. Threshold tc can be optimized to maximize an arbitrary metric (e.g., F1

score) using tuning data.

In cases where none of the GO domain codes is assigned to input v, then it is considered to be negative. This

ensures that an input does not have both positive (BP, MF, or CC) and negative classes together. It should be noted

that, however, negative class does affect classification because more negative instances included in k neighbors

generally lead to lower scores for the positive classes.

We slightly modified the standard scoring scheme above to multiply the similarity scores by the number of k

neighbors having class c, denoted as |nc|.

if Score(c, v) =
∑

i

sim(v, nc,i) × |nc| > tc, then assign c to v (6)

It intended to boost the scores for more frequent classes within the k neighbors. This modification slightly but

constantly improved classification (around 2% in F1 score), presumably because for evaluation we used micro-

averaged F1 which emphasizes larger classes (see Section 3.3).
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3 Experimental Setup

3.1 Implementation

We implemented for evaluation the categorization framework described in Section 2 in the R programming language,

where data preprocessing including feature selection was done by Perl scripts. All the experiments reported in this

paper were carried out on a PC running Linux with two 2.00 GHz Intel Pentium 4 processors and 3.5 GB of RAM.

3.2 Data sets

For evaluation, we use the data set from the Genomics Track 2004 GO annotation task (Cohen & Hersh, 2006).

The data set is composed of 504 full-text articles for training and 378 for test, both in SGML format. Each of the

articles is associated with one or more genes and each gene is annotated with one or more classes (BP, MF, and

CC) or negative by MGI curators. The total number of triplets 〈article, gene, class〉 is 1,661 (589 positives and 1,072

negatives) and 1,077 (495 positives and 582 negatives) for the training and test data, respectively. Because gene

names often contain Greek alphabets, character entities used for representing Greek alphabets (e.g., “&agr;” for α)

were converted to the corresponding English spellings (e.g., alpha) in advance to facilitate gene name identification.

The training data were used for tuning parameters including the number of k neighbors and per-class thresholds

tc in Equation (6) and were used as pre-labeled instances in classifying the test data by kNN.

3.3 Measures

Following the TREC Genomics Track, we used the micro-averaged F1 score as an evaluation metric for GO anno-

tation, so as to make our results directly comparable with the official evaluation. Micro-averaged F1 is an instance-

based measure paying equal importance to each instance (or label) and hence more influenced by the performance in

larger classes, whereas the another measure—macro-averaged F1—is class-based, paying equal importance to each

class (Jackson & Moulinier, 2007). Both types of F1 are defined as the harmonic mean of precision and recall, which

are calculated based on either instances or classes depending on the type of F1 intended. Equation (7) presents the

definitions of the micro-averaged measures, where classes are biological process (BP), cellular component (CC),

and molecular function (MF) and do not include negative (NEG).

Recall =
# of class labels correctly predicted by the system

# of true class labels

Precision =
# of class labels correctly predicted by the system

# of class labels predicted by the system

F1 =
2 × Precision × Recall

Precision + Recall

(7)
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Table 1: The TREC official results and our results for GO domain code annotation (on the test data set).

Prec Recall F1

Best 0.441 0.769 0.561

TREC Worst 0.169 0.133 0.149

Mean 0.360 0.581 0.382

TFIDF 0.445 0.849 0.584

Ours TFCHI1 0.460 0.764 0.575

TFCHI2 0.501 0.707 0.586

4 Results and discussion

4.1 Primary results

Our proposed framework for GO annotation was applied to the test data, where the per-class thresholds tc in Equa-

tion (6) and other parameters including the number of k neighbors were optimized to maximize F1 for each term

weighting scheme using the training data.11 Table 1 compares our results (TFIDF, TFCHI1, and TFCHI2) on the test

data and the representative results from the TREC official evaluation. For the annotation task, there were 36 runs

submitted from 10 different research groups (Hersh, 2004). Incidentally, the best result in TREC was also obtained

by our group using TFCHI2 (Seki et al., 2004; Seki & Mostafa, 2005). The improvement from 0.561 (“Best”) to

0.586 (“TFCHI2”) is due to a few corrections in our codes for feature selection and classification. It should be also

mentioned that the TFCHI2 scheme performed the best for the GO domain and evidence codes annotation task at the

TREC 2004 as well (see Hersh, 2004; Seki et al., 2004).

We can observe that, despite the simplicity of our approach, it performed quite well especially with TFIDF and

TFCHI2. In the following sections, we take a closer look at major features or components of our framework and

discuss their contribution.

4.2 Additional experiments

4.2.1 Alternative settings

We have made a number of design decisions in developing our framework and system features. To investigate the

impact of the decisions, we conducted several experiments with various different settings. Particularly, we were

interested whether the features or components below had made any impact on GO annotation.

• Gene name identification: We identified the paragraphs that were likely to contain the target gene using

approximate word matching (see Section 2.1). Did it actually improve GO annotation? To answer the question, we

11For instance, for TFCHI2, k was set to 60 and tc was set to 211.4, 194.4, and 275.8 for BP, CC, and MF, respectively.
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used exact word matching to identify gene names.

• Gene name dictionary: Assuming gene name identification above worked, did the dictionary for gene name

expansion contribute to the performance? We examined our framework without the help of the dictionary.

• Glossary and keyword fields: Similarly, did the use of SGML tags, <GLOSSARY> and <KEYWORD>, for finding

gene name synonyms improve GO annotation? We tested our framework without the information.

• MeSH terms: Did the inclusion of MeSH terms contribute to classification? We tested our framework without

using MeSH terms.

• Unit of extraction: Was a paragraph as a unit of extraction appropriate? We explored other units:

• Only the sentence containing the target gene (denoted as G)

• In addition to G, an immediately succeeding sentence (denoted as G+S)

• In addition to G+S, an immediately preceding sentence (denoted as P+G+S)

• The entire article irrespective of the target gene (denoted as ART)

Note that, however, we did not let both G+S and P+G+S go beyond paragraph boundaries. Incidentally, our frame-

work focusing on paragraphs would be placed somewhere between P+G+S and ART.

4.2.2 Empirical observations

Table 2 summarizes the system performance in F1 for each of the experimental settings described above, where

the training data were classified using leave-one-out cross-validation, while the test data were classified using the

training data as before. Note that the bottom row “Default” corresponds to TFCHI2 in Table 1 but shows higher F1.

This is because threshold tc for kNN was optimized on the evaluation data themselves for this experiment in order

to compare possible maximum gain by different settings.

Gene name identification Using exact word matching for gene name identification severely deteriorated the per-

formance both on the training and test data sets. This supports our observation that gene names are often written

in slightly different forms from their canonical ones (i.e., database entries). Thus, a flexible name matching scheme

such as the one proposed here is needed in order to exhaustively locate gene name occurrences. A possible drawback

of approximate word matching is that it may recognize irrelevant word sequences as gene names (i.e., false posi-

tives), leading to an inclusion of irrelevant text fragments into the representation of the target gene. However, the

influence can be minimized by properly tuning the threshold (and parameters) for the word-overlap score defined in

Equation (1). Based on our experiments, a threshold of 0.3 (which was used for our experiments) constantly yielded

the best performance.

Gene name dictionary Disabling the gene name dictionary also decreased F1 score both on the training and

test data by 21.7% on average. It verifies that gene name expansion using the dictionary did help to identify text
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Table 2: Results for deletion experiments, where each system component was turned off or replaced with an alternative. Num-

bers in parentheses in column “Average” indicate percent increase/decrease relative to “Default” which corresponds to TFCHI2

in Table 1 but uses threshold tc optimized on the evaluation data themselves.

System component
F1

Training Test Average

Gene name identification Exact 0.368 0.417 0.393 (−31.5%)

Gene name dictionary Unused 0.434 0.465 0.450 (−21.7%)

Glossary and keyword Unused 0.528 0.627 0.578 (+0.6%)

MeSH terms Unused 0.526 0.611 0.569 (−0.9%)

Unit of extraction

G 0.519 0.609 0.564 (−1.7%)

G+S 0.525 0.612 0.569 (−1.0%)

P+G+S 0.528 0.615 0.572 (−0.4%)

ART 0.499 0.585 0.542 (−5.6%)

Default 0.528 0.620 0.574

fragments relevant to the target gene, which would have been ignored otherwise. Although our dictionary is auto-

matically compiled without manual curation and is thought to be noisy, it was found beneficial for this task where a

gene of interest was known beforehand.

Glossary and keyword fields Contrary to our expectation, the use of glossary and keyword fields as a source of

gene synonyms was not found to be helpful for GO annotation. There was little or no difference between the F1

scores produced with and without the use of the fields. Close investigation revealed that these fields hardly provided

information regarding gene synonyms and thus had little effect on the classification performance. To be precise,

there were only 15 pairs of gene and synonyms found in these fields out of 882 articles in the training and test data

sets.

MeSH terms Similarly to the case of glossary and keyword fields, the F1 scores show little difference between the

settings where MeSH terms were used (i.e., “Default”) and unused. To further examine the effect of MeSH terms

for GO annotation, we inspected precision and recall at different thresholds (tc) for kNN. Our expectation was that

the inclusion of MeSH terms would lead to predicting more potential classes for a given gene (which raises recall)

but also produce some false positives (which decreases precision), resulting in seemingly little difference in terms of

F1. However, we were not able to observe much difference whether or not MeSH terms were used. The reason why

they were found irrelevant for GO annotation would probably be that while MeSH is annotated with an article, GO

annotation is gene-specific. In other words, GO terms are not annotated with an article but with an individual gene
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Figure 3. Relation between recall and precision where either selected paragraphs (i.e., Default) or entire article (ART) were

used for document representation.

appearing in it. Therefore, it might be possible to improve GO annotation if each MeSH term could be precisely

associated with an individual gene.

Unit of extraction Four different units were compared in extracting text fragments. In short, as going from G

(only sentences containing the target gene) to ART (entire article) in Table 2, more text was extracted for document

representation. As can be seen, there is a trend that F1 gradually increases from G to P+G+S (sentence containing

the target gene plus immediately preceding and succeeding sentences) and then decreases when the entire article was

used (i.e., ART) compared to “Default.” From this observation, it is verified that our framework to extract paragraphs

is optimum, although the difference from G, G+S, or P+G+S is insignificant.

To highlight the effect of extracting gene-bearing paragraphs, Figure 3 compares recall-precision curves for

selected paragraphs (Default) and entire article (ART) on the training and test data.

The top two curves were obtained on the test data and the bottom two were obtained on the training. Overall, it can

be seen that using only paragraphs mentioning the target gene (shown as solid lines) improves precision at the same

recall level both on the training and test data. Especially, the effect is more evident with higher recall. This means

that selectively using only relevant paragraphs suppresses false positives when lowering the threshold.
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Figure 4. Results produced by individual sections. “All” used all the sections. Percentages above bars indicate the respective

proportions to “All”.

4.2.3 Contributions of different parts of articles

Our current framework makes use of paragraph boundaries in extracting text fragments containing the target gene.

However, it does not consider or distinguish the structure of an article, e.g., sections. Such information may be useful

for GO annotation because different parts of articles may have different importance with respect to GO annotation.

For example, “Results” or “Conclusion” sections may be more relevant to GO annotation as they usually report

findings from experiments. Therefore, we examined how useful the individual sections were for GO annotation by

using only one section at a time from which gene-bearing paragraphs were extracted. Specifically, we focused on

the following sections: abstract, introduction, procedures, methods, and results. Both discussion and conclusion

sections were regarded as result sections since they are sometimes not clearly separated from results (e.g., “Results

and Discussion” section). Incidentally, these sections were identified based on section names annotated by SGML

tags.

Figure 4 shows a histogram for F1 scores produced using individual sections on the training data, where we

include results from the use of only titles and only MeSH terms for comparison. The rightmost bar “All” used all the

sections including MeSH, which corresponds to “Default” in Table 2.

Surprisingly, the Result section alone yielded almost as good F1 as All, followed by Abs (abstract), MeSH, Proc

(procedures), and so on. On the other hand, the Method sections showed the worst performance—worse than only

titles—for GO annotation. This is, however, consistent with the suggestion given by experts that “Materials and

Methods” sections can be used for identifying species and GO evidence codes but should not be used for predicting
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Table 3: System performance in F1 for different feature selection policies.

Policy Term weight Training Test Average

max χ2
TFIDF 0.512 0.619 0.566

TFCHI2 0.528 0.620 0.574

Round-robin
TFIDF 0.510 0.621 0.566

TFCHI2 0.525 0.629 0.577

GO terms (Camon et al., 2005). Although not presented here, our experiments on the test data also showed similar

results.

In an attempt to improve GO annotation, we explored a better use of the logical structure of articles in two

ways: a) we weighted each section differently considering its relative importance, and b) we appended section

information to each term to indicate where the term came from. For example, the same word “cell” was treated as

two distinct features in cases where it was found in Title and Method sections, respectively, as “Title+cell” and

“Method+cell.” Unfortunately, both attempts failed to improve system performance and rather decreased F1 a few

points. More work is needed to identify the best use of article structure.

4.3 Discussions on alternative feature selection policies

4.3.1 Round-robin feature space allocation

As described in Section 2.1.3, we selected discriminative features (terms) based on the maximum chi-square statistic,

maxi χ
2(t, ci). A potential shortcoming of this feature selection policy is that it by definition does not take into

account how many features took maximum chi-square for each class. As a result, the distribution of features is not

necessarily balanced. In fact, among the 3000 features selected for the preceding experiments, 242 took maximum

in class BP, 339 in MF, 463 in CC, and 1956 in NEG.

An alternative feature selection policy would be the round-robin proposed by Forman (2004), which allocates

the feature space equally among all classes. For instance, given four classes, 3000 features would be equally divided

into four (i.e., 750 features) and be allocated to each class. The intention of the policy is to avoid selecting a large

number of strong features for only some “easy” classes and to select a certain number of good predictive features

for every class including more difficult ones. On 19 different benchmark data sets, Forman demonstrated that the

round-robin policy could gain a substantial improvement over max χ2 especially when the feature size was small.

In order to examine if Forman’s observation holds for GO annotation, we tested the round-robin policy on our

data sets while using TFIDF and TFCHI2. Note that all the parameters remained the same as the best setting from the

previous experiments. Only exception was threshold tc for kNN as before, which was optimized on the evaluation

data themselves for cross-setting comparison. The results are summarized in Table 3.
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Figure 5. An illustration of different levels of specificity in GO hierarchy. Note that GO allows a node to have multiple parents.

In brief, the results are mixed; when adopting round-robin, F1 decreased on the training data and increased on

the test data. In either event, however, the difference is insignificant. The small effect may be due to the fact that the

number of classes dealt with in this task is very small. With only four classes (and the relatively large feature size

of 3000), it would be easy to include a reasonable number of features for each class without applying round-robin

even though the distribution is skewed. Also, because the number of classes is small, it is likely that good features

for one class are also good features for the others.

To investigate the impact of different feature selection policies on GO annotation with a larger number of classes,

we conducted another set of experiments by looking at more specific GO terms instead of the GO domains. The next

section describes the design of the experiments and reports the results.

4.3.2 GO term annotation

Each gene (or its product) appearing in the TREC Genomics Track data set is annotated with one or more GO

terms along with GO domains. For example, “vascular cell adhesion molecule 1” (GeneID: 22329) appearing in a

MEDLINE article (PubMed ID: 12021259) is assigned, in addition to a GO domain code BP, a more specific GO

term “cell adhesion (GO code: 0008378),” which is at the third depth level of the GO hierarchy as illustrated in

Figure 5. Based on these GO term annotations, we examined how the round-robin policy affected automatic GO

annotation for different levels of specificity. Incidentally, GO annotation at the deeper depth level is inherently more

difficult since there are combinatorially more classes (GO terms) barely used (Ogren et al., 2005), meaning less

training instances for many classes.

For each depth level from 1 (corresponding to GO domains) to 6, we carried out experiments to assign GO terms

at that level. Note that a greater depth level involves more classes (GO terms). Since the annotated GO terms in our

data set had different depth levels, we traced back each annotated GO term to the root of the ontology and re-assigned

GO term(s) at any given level in-between. For instance, suppose that we are attempting to annotate GO terms at the

second depth level. In this case, both “biological adhesion” and “cellular process” are treated as the correct GO
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Figure 6. Relations between system performance in F1 and different depth levels of Gene Ontology. The left and right figures

show the results on training data and test data, respectively.

terms for “cell adhesion” because they are ancestors (parents) of “cell adhesion” at the second depth level. In cases

where the depth level is greater than that of the original GO term, the original is used as the correct one (e.g., “cell

adhesion” for the fourth, fifth, or sixth depth level). We tested again TFCHI2 and TFIDF with/without adopting

round-robin. Figure 6 shows the plots for the training data (left-hand side) and the test data (right-hand side), where

the number of classes at each depth level is indicated by the upper x axis.

As can be seen, we still have mixed results. For the training data, adopting round-robin (shown as dotted

lines) deteriorates F1 at first and then recovered to those without round-robin (solid lines). For the test data, on

the other hand, the effect of round-robin did not have a clear, consistent tendency in either direction. In sum, the

round-robin policy did not improve GO annotation even for a larger number of classes by contraries. However, the

next section demonstrates that the feature selection policy does make difference when the features associated with

negative instances are properly treated.

4.3.3 Effects of negative features

For GO domain annotation, we have selected predictive features based on the chi-square statistic, where four classes

(i.e., BP, MF, CP, and NEG) were considered. In classification, however, the features whose chi-square was maximize

in NEG were not actively used. (Remember that those instances which were assigned none of the GO domains were

considered as negatives.) Thus, one may argue that selecting good predictive features for NEG is actually wasting
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Figure 7. Relations between system performance in F1 and different depth levels of GO, where no negative features were

selected. The left and right figures show the results on the training and test data, respectively.

the feature space, which otherwise could be allocated to the other classes. In other words, including more features

not for NEG but for GO domains/terms may boost the classification performance. In the following, we call those

features strongly associated with NEG as “negative features” for short.

We tested this idea in conjunction with round-robin to see how those negative features interact with different

feature selection policies and consequently affect GO annotation. Figure 7 plots F1 with different levels of GO term

specificity, where NEG was not considered at the feature selection stage. That is, no negative features were selected

to represent documents.

Now, observe that round-robin used with TFCHI2 outperforms the others both on the training and test data after

the depth level reached at 3 (where the number of classes is 79). This indicates that some classes are not receiving

good predictive features based on the standard max χ2 as the number of classes increases. When excluding negative

features, round-robin was able to avoid the pitfall with no or little side effect at lower depth levels.

It should be also noted that TFIDF did not work well as compared with TFCHI2 when the number of classes

increased despite the fact that they used exactly the same set of features. Although round-robin improved F1 for

TFIDF on the test data at the second and third depth levels, it does not match TFCHI2 with round-robin overall.

It implies that TFIDF is not necessarily a good term weighting scheme depending on several factors, including the

number of classes considered, feature selection policy, and negative features. We will return to this point later in

Section 5.
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5 The triage task

5.1 Overview

The framework we described so far targeted GO annotation. However, it can be also applied to another task from the

TREC Genomics Track, i.e., the triage task (see Section 1). In brief, the triage task is to determine if an input article

contains experimental evidence that warrants GO annotation, where no particular gene is specified. This task can be

naturally regarded as a binary text categorization problem to classify input text (article) into two bins, i.e., positive

and negative.

In terms of text categorization, a primary difference between GO annotation tackled in the previous sections and

the triage task is that the former takes a pair of article and gene as input, whereas the latter takes only an article. As

input is not gene-specific, the triage task could simply rely on an entire article for document representation without

the necessity to locate text fragments containing a particular gene. Yet, because the triage decision must be made

in consideration of the genes mentioned in a given article, our framework to use only gene-bearing paragraphs may

be more appropriate. Thus, we adapted our system to extract paragraphs that were likely to contain any gene name

identified by gene name recognizer YAGI (Settles, 2004). Note that MeSH terms associated with a given article were

also included as features as in GO annotation.

5.2 Methods

We used the same methods described in Section 2 for document representation and classification except the follow-

ings.

• For document representation, paragraphs that were likely to contain any gene name (determined by YAGI)

were used. Feature selection and term weighting were done in the same ways as GO annotation. Note that the issues

regarding feature selection policies raised in GO annotation do not exist for the triage task since there are only two

classes; Chi-square statistic for a given term takes the same value for both classes, and thus there is no need for

round-robin or special consideration for negative features.

• For classification, the variant of kNN classifiers defined in Equation (6) was used but had only one class, i.e.,

positive (POS).

5.3 Data and evaluation measures

We used the TREC data set provided for the triage task, which was composed of 5837 full text articles for training

(375 positives and 5462 negatives) and 6043 for test (420 positives and 5623 negatives) taken from three journals:

Journal of Biological Chemistry, Journal of Cell Biology, and Proceedings of the National Academy of Science. The

training data is a subset of the articles published in 2002 and the test data is a subset of those published in 2003.

As is the case with GO annotation, the training data were used for tuning parameters and were used as pre-labeled



21

Table 4: The TREC official results and our results for the triage task (on the test data set).

Prec Recall Unorm

Best 0.157 0.888 0.651

TREC Worst 0.200 0.014 0.011

Mean 0.138 0.519 0.330

TFIDF 0.112 0.752 0.455

Ours TFCHI1 0.160 0.883 0.651

TFCHI2 0.137 0.826 0.567

instances by kNN to classify the test data. Specifically, the number of neighbors k and the value of threshold tPOS

were set to 160 and 93.4, respectively, so as to maximized the normalized utility measure (explained next) on the

training data.

For the evaluation measure, normalized utility measure Unorm defined below was used according to the TREC

evaluation.

Unorm = Uraw/Umax (8)

where

Uraw = ur × T P − FP

Umax = ur × (T P + FP)
(9)

TP and FP denote the number of articles correctly identified as positive (true positives) and the number of articles

falsely identified as positive (false positives), respectively. The coefficient ur in the right-hand side of the equations

denotes the relative utility of a relevant document, defined as the ratio of the number of positive instances and the

number of negative instances. For the Genomics Track 2004 data set, ur was set to 20.

5.4 Results and discussion

Table 4 compares our results with the representative results from the TREC official evaluation, where precision and

recall are also presented.

Our framework with the term weighting scheme TFCHI1 compared favorably with the best performing system

developed by Dayanik et al. (2004), while TFIDF did not perform as well. This is mainly because the TFIDF scheme

could not assign an appropriate (high) weight to the MeSH term “Mice” since it appeared in many documents

(leading to a low IDF value). It was reported that a simple rule which classified articles annotated with the MeSH

term Mice as positive and those without it as negative could have achieved nearly as good performance as the best

reported result (Dayanik et al., 2004).
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Unlike TFIDF, TFCHI considered word distributions across different classes and was able to assign higher

weights even to the terms that appeared in many documents but almost only within a class, such as Mice in this par-

ticular data set. To contrast the difference between IDF and χ2 values, we plotted a scatter diagram for corresponding

IDF and χ2 as shown in Figure 8, where MeSH terms are indicated by capitalization.

As can be seen, high-χ2 words, such as Mice, Animals, embryon (the stem for embryonic), and knockout, were

not necessarily assigned high IDF values. Interestingly, the correlation coefficient for IDF and χ2 turned out to be

−0.13, which is usually strongly and positively correlated as reported in the text categorization literature (Yang &

Pedersen, 1997). The result suggests that TFIDF, which is frequently used for text categorization, is not necessarily

optimum depending on the characteristics of the target data. This supports the idea of the supervised term weighting

schemes (Debole & Sebastiani, 2003) that class-based term weights such as chi-square statistic is more appropriate

for classification.

It may be also possible, however, that our framework with TFCHI1 performed well solely because of the notably

high value of χ2 associated with the MeSH term Mice (remember that simple heuristics using Mice could perform

very well). To examine the possibility, we applied the TFCHI1 scheme to hypothetical test data where the MeSH

term Micewas completely removed. The resulting normalized utility score was 0.548, which outperforms the TFIDF

scheme in Table 4 and is still comparable to the second best system (Fujita, 2004), which yielded a Unorm of 0.549,

in the TREC evaluation.
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Table 5: Triage performance in Unorm comparing Cohen et al. (2004)’s system and ours on the training and test data. The

results for the test data correspond to those in Table 4. Numbers in parentheses indicate percent increase/decrease relative to

the performance on “Training.”

Training Test

Cohen’s voting perceptron 0.660 0.498 (−24.5%)

TFIDF 0.557 0.455 (−18.3%)

Ours TFCHI1 0.654 0.651 (−0.5%)

TFCHI2 0.584 0.567 (−2.9%)

5.5 Concept drift

An interesting aspect of the triage task data set is that there seems to exist concept drift (see Wang et al., 2003, for

example) between the training and test data, reported by Cohen et al. (2004). For the triage task, Cohen and his

colleagues used a feature (term) set similar to our proposed method and tested three different classifiers: SVM, naı̈ve

Bayes, and voting perceptron. They observed that all the classifiers performed significantly worse on the test data

than on the training data with a decrease ranging from 22.2% to 40.5% in Unorm. A possible source of the problem

is that the features and/or their weights derived from the training data do not well represent the test data. They

investigated the data set along this line and showed that the overlap ratio between the feature sets obtained from the

training and test data was only 0.250, even though frequent terms between the two data sets overlap more than 90%

of times.

To examine whether our method is subject to the same problem concerned with the concept drift, we looked at

how well our system performed on the training data. Table 5 compares Cohen et al.’s result using voting perceptron

(which produced their best) and ours with the three different term weighting schemes, where the system performance

is shown in Unorm. Note that the percent decrease in the parentheses can be seen as an indicator for the vulnerability

of a system to concept drift. In short, our system performed consistently well also on the training data except for

the case where TFIDF was used as a term weighting scheme; When TFIDF was used, the normalized utility score

dropped from 0.557 to 0.455 on the training test data, respectively. This result suggests another advantage of TFCHI

that it is a more robust term weighting scheme than TFIDF for data demonstrating concept drift.

5.6 Follow-up experiments on the TREC 2005 data set

The triage task continued to be challenged at the following Genomics Track 2005 (Hersh et al., 2005).12 Basically,

the article set used for the TREC 2005 is the same as the 2004 but additional articles were judged as positives by

MGI. Consequently, ur was updated from 20 to 11, reflecting the change in the ratio of positive and negative articles.

12One difference is that Genomics Track 2005 introduced three other types of information for triage in addition to GO annotation.
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Table 6: The TREC 2005 official results and our results on the updated ur and data set.

Prec Recall Unorm

Best 0.212 0.886 0.587

TREC Worst 0.071 0.174 −0.034

Median 0.322 0.566 0.458

TFIDF 0.192 0.712 0.439

Ours TFCHI1 0.212 0.875 0.578

TFCHI2 0.199 0.782 0.495

We again ran our system on the new gold standard with the updated ur to see whether our proposed framework

could yield a consistent performance. As before, the parameters including feature size n, number of neighbors k, and

thresholds tc were tuned to maximize the normalized utility score using the training data. The results are summarized

in Table 6.

As shown, our approach with TFCHI1 yielded comparable performance with the best Unorm reported by Niu et

al. (2005), though slightly behind by 0.009 points. Section 6 looks at other’s approaches including Niu et al.’s which

attained good performance among the TREC participants.

6 Related work

This section first discusses representative work by other researchers for the GO annotation and triage tasks in turn.

Then, it looks at another important workshop, the BioCreative challenge, which in part targeted GO annotation.

For GO domain annotation, Settles & Craven (2004) developed a two-tier classification framework using Naı̈ve

Bayes (NB) classifiers and Maximum Entropy (ME) models with several external resources and specialized features.

They exploited the structure of articles and distinguished six section types (such as introduction and discussion)

as a unit of classification. They created an NB classifier for each section and the output probabilities of the NB

classifiers were then combined using ME models which differently weighted each of the section types and classes.

The features used for the NB classifiers included not only words from body text but also syntactic patterns and

what they call informative terms. The syntactic patterns are frequent patterns for subjects and direct objects (e.g.,

“translation of X”) automatically collected from training data using a shallow parser. The informative words were

word n-grams (1≤n≤3) having high chi-square statistic. To supplement the relatively small size of the training data

provided by TREC, they used external resources including the BioCreAtIvE data set (Hirschman & Blaschke, 2003)

and MEDLINE abstracts with which specific genes and GO codes were associated in existing databases other than

MGI. The reported F1 score was 0.514, which is 12.3% lower than our best score reported here. The difference is

presumably due to the fact that their system did not employ gene name expansion and approximate word matching
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which we found highly important for GO annotation.

For the triage task at the Genomics Track 2004, Dayanik et al. (2004) applied Bayesian logistic regression (BLR)

models, which estimate a probability that an input belongs to a specific class. For document representation, they

used MeSH terms from the MEDLINE database in addition to input articles. Their best result was achieved by

applying the following configuration. They used only title, abstract, and MeSH terms for features and applied the

conventional TFIDF term weighting scheme, and proposed a two-stage classifier which assigned negative to all

articles not indexed with the MeSH term Mice and classified those indexed with Mice by using BLR. The reported

normalized utility score is 0.641. In spite of using TFIDF, which yielded suboptimal results in our experiments, their

approach outperformed other TREC participants thanks to the first-stage filtering.

For the following Genomics Track 2005, Niu et al. (2005) proposed a framework incorporating a domain-specific

term selection module for the triage task. In contrast to other approaches including ours which select predictive fea-

tures (terms) based on some form of a statistical analysis on the Genomics Track data set, they compared the word

distributions in the Genomics Track corpus and another corpus from different domains, specifically, the TREC .GOV

collection (Craswell & Hawking, 2002), so as to identify domain-specific term bigrams appearing in the Genomics

Track data set. Only terms appearing near those domain-specific bigrams were used for document representation,

where the window size was set to 2. As a classifier, they tested a few classifiers including Support Vector Machines

(SVM) (Joachims, 1998), kNN, and Rocchio (Rocchio, 1971), and reported that SVM had shown the best perfor-

mance (Unorm = 0.587; see Table 6). Unfortunately, however, it has not been reported what contributed to the final

output, i.e., the domain-specific terms, the choice of the classifier (SVM), or their combination. Judging from the

fact that our approach not using corpus comparison yielded a comparable performance with theirs, the effect of the

domain-specific terms may be limited.

Besides the Genomics Track, there was another workshop focusing on biomedical text processing, i.e., the first

BioCreative challenge, held in 2004 (Blaschke et al., 2005). BioCreative consisted of two main tasks: named entity

recognition and GO annotation. Similarly to the Genomics Track, the latter, called task 2, assumed an article and

protein pair as input but aimed at predicting actual GO terms and providing a passage which supports each GO term

prediction. In order to assign specific GO terms, most participants in BioCreative took advantage of pattern matching

and regular expressions and searched for GO term mentions in a given article. The output (i.e., triplets of protein-GO

term-passage) submitted by participants was manually evaluated by three expert curators at the European Institute

of Bioinformatics (EBI). In total, 5258 predictions (triplets) were submitted; Of them, 422 were judged as “perfect

predictions,” meaning that the extracted passage supports the relation between the associated protein and GO term.

Because this evaluation was done only on the submitted predictions, there are likely to be more true positives.

Nonetheless, if we regard the number (422) as the total number of true positives for the purpose of computing

recall, the highest (and likely overestimated) F1 obtained among the participants is 0.216 by Ray & Craven (2005).

Although the lessons and data set obtained through the BioCreative challenge are indeed invaluable resources, it was

concluded that significant improvement was still needed for practical applications (Blaschke et al., 2005; Camon et
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al., 2005).

Following the BioCreative challenge in which most participants looked for evidence in a given article, Stoica &

Hearst (2006) explored the use of orthologs and GO code co-annotation in order for predicting GO terms. The former

focuses on the fact that orthologous genes—similar genes found in different species but originated from a common

ancestor—often have the same functions. Stoica & Hearst used this information as a constraint and considered only

the GO codes that have been annotated with the orthologs of a given gene (product). The latter, GO code annotation,

is based on the observation that there are cases where some GO terms are not usually co-annotated together to

the same gene because annotating them together is illogical (e.g., transcription (GO:0006350) and extracellular

(GO:0005576) are not likely to be co-annotated as transcription cannot happen outside of a cell). For every pair of

GO terms, they computed χ2 as their association and filtered out unlikely GO code assignment. On the BioCreative

data set, their proposed approach achieved an F1 of 0.227—moderately higher than Ray & Craven’s. Their approach

were also tested on two different data sets from EBI human and MGI databases, producing F1 of 0.118 and 0.140,

respectively.

7 Conclusions

This paper presented our work primarily on automating GO domain code annotation. We approached this task by

treating it as a text categorization problem and adopted a variant of kNN classifiers. To apply kNN, we first repre-

sented each input, 〈article, gene〉 pair, by a term vector, where terms were collected from text fragments (paragraphs)

containing the given target gene. To exhaustively locate the gene name occurrences, we took advantage of existing

databases to automatically compile a gene synonym dictionary and preprocessed both gene names and text to tolerate

minor differences between them. In addition, we utilized approximate word matching to identify gene occurrences

to deal with other irregular forms of the gene names. The collected words were then fed to feature selection using

chi-square statistic, which was reused for term weights adopting supervised term weighting schemes.

We evaluated the proposed framework on the TREC 2004 Genomics Track data sets and showed that, overall,

our method performed the best compared with the TREC official evaluation. Further analyses revealed that the

flexible gene name matching used in conjunction with the gene name dictionary was notably effective. Another

finding is that the result sections of articles contributed the best for GO annotation, and the method sections the

worst. In addition, experiments comparing different feature selection policies showed that when terms associated

with negative instances were excluded, the advantage of the round-robin policy became prominent as the number

of classes increases. Furthermore, it was demonstrated that our framework was successfully applied to a related but

different problem, the triage task, producing a normalized utility score of 0.651 and 0.578 for the TREC 2004 and

2005 data sets, respectively, which were found comparable to the best reported performance. In addition, the TFIDF

term weighting scheme was found suboptimal for this particular task and data sets.

For future research, we are planning to explore a better use of article structure and local context around the
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target gene. Such information may be incorporated into the current framework by way of term weights or a different

representation of features. Another direction is to extend our work to more advanced, realistic settings. For example,

in real-world GO annotation, gene names are not given in advance. Taking only articles as input without particular

genes would be an interesting challenge.
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