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Abstract

This paper proposes a method for identifying protein
names in biomedical texts with an emphasis on detecting
protein name boundaries. We use a probabilistic model
which exploits several surface clues characterizing protein
names and incorporates word classes for generalization.
In contrast to previously proposed methods, our approach
does not rely on natural language processing tools such
as part-of-speech taggers and syntactic parsers, so as to
reduce processing overhead and the potential number of
probabilistic parameters to be estimated. A notion of cer-
tainty is also proposed to improve precision for identifica-
tion. We implemented a protein name identification system
based on our proposed method, and evaluated the system
on real-world biomedical texts in conjunction with the pre-
vious work. The results showed that overall our system per-
forms comparably to the state-of-the-art protein name iden-
tification system and that higher performance is achieved
for compound names. In addition, it is demonstrated that
our system can further improve precision by restricting the
system output to those names with high certainties.

1 Introduction

Ever-growing digitized texts have resulted in a demand
for automated techniques to extract novel information from
texts. Message Understanding Conferences (MUCs) [10]
represent one of the major attempts to develop information
extraction (IE) techniques targeting general texts (newswire
articles) in which the participants independently imple-
mented IE systems and compared their system performance
on a common test set.

IE is crucial also in the field of cellular and molec-
ular biology because of a strong demand for automati-
cally discovering molecular pathways and interactions in
the literature, which is, even for human experts, labor-

intensive and time-consuming. Therefore, much research
has been conducted to explore IE techniques on biomedical
texts [1, 7, 8, 11, 15, 18, 19, 21, 23].

Our ultimate goal is to realize an automated system
to discover novel information in the biomedical literature,
specifically, relations and interactions between specific pro-
teins and cancer, which is expected to be beneficial for de-
veloping new medicine and treatments peculiar to cancer.
To accomplish our goal, we start with identifying protein
names appearing in biomedical texts. However, automatic
protein name identification is not a trivial task. This is
partially because there are no common standards or fixed
nomenclatures for protein names that are followed in prac-
tice [4]. As new proteins continue to be discovered and
named, predefined protein name dictionaries are not nec-
essarily helpful in identifying new protein names. Addi-
tionally, protein names frequently appear in shortened, ab-
breviated, or slightly altered forms (e.g., the use of capital
and small letters and hyphens). Therefore, even the pro-
tein names that are already known and are supposed to be
contained in a dictionary might be overlooked due to the
way they are actually written. Another challenging issue for
identifying protein names is to find their name boundaries.
According to our preliminary research on 99 MEDLINE
abstracts, 42% of protein names are composed of multi-
ple tokens (tokens are defined as words and symbols), and
these tokens include common nouns, adjectives, adverbs,
and even conjunctions, which makes it difficult to distin-
guish protein names from the surrounding texts [22].

We propose a statistical approach to identifying protein
names in biomedical texts. Our approach employs proba-
bilistic models for finding protein name boundaries and for
restricting the final output to those with high certainties so
as to improve the accuracy of identification. The probabilis-
tic models exploit surface clues that reflect the characteris-
tics of protein names. To evaluate our method, a series of
experiments is conducted to compare results with previous
findings by other researchers.

Section 2 briefly summarizes past work related to pro-
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tein name identification, and Section 3 details our proposed
method. In Section 4, the methodology of evaluation is de-
scribed and the result is presented and discussed. In Sec-
tion 5 and Section 6, we conclude this paper with our find-
ings and future work.

2 Related Work

There have been number of attempts to develop tech-
niques to identify protein names in the biomedical literature.
They roughly fall into three approaches, that is, dictionary-
based, heuristic rule-based, and statistical.

A technique based exclusively on a dictionary is not nec-
essarily helpful for identifying protein names because new
protein names continue to be created and there are often
many variations in the way identical proteins are referred
to. To tackle this problem, Krauthammer et al. [13] pro-
posed an approach to protein and gene name extraction,
using BLAST [2], a DNA and protein sequence compar-
ison tool. Their basic idea involves performing approxi-
mate string matching after converting both dictionary en-
tries and input texts into nucleotide sequence-like strings,
that then can be compared by BLAST. The results they re-
ported, however, cannot be directly compared with our case,
because they targeted both protein and gene names and the
results were not separately reported.

Fukuda et al. [9], Narayanaswamy [14], and Olsson et
al. [17] proposed rule-based approaches. They exploited
surface clues for detecting protein name fragments (i.e.,
parts of protein names) and used a part-of-speech tagger
and/or a syntactic parser for finding protein name bound-
aries. Typically, the surface clues include the following fea-
tures, where bold characters indicate the corresponding ex-
amples.

� Capital letters (e.g., ADA, CMS)

� Arabic numerals (e.g., ATF-2, CIN85)

� Roman alphabets (e.g., Fc alpha receptor, 17beta-
estradiol dehydrogenase)

� Roman numerals (e.g., dipeptidylpeptidase IV, factor
XIII)

� Words appearing frequently in protein names (e.g.,
myelin basic protein, PI 3-kinase, nerve growth fac-
tor)

Olsson et al. [17] conducted experiments that compared
their system (Yapex) with Fukuda’s system (Kex) on 101
MEDLINE abstracts. Yapex achieved a recall of 61.0% and
a precision of 62.0% as compared to a recall of 37.5% and a
precision of 34.3% on Kex in terms of exact match. Inciden-
tally, Narayanaswamy et al. [14] reported to have achieved

a recall of 69.1% and a precision of 96.9% on 55 MED-
LINE abstracts, where the precision is much higher than
both Yapex and Kex. Notice that, however, Narayanaswamy
et al. were targeting both protein and gene names and did
not distinguish them in the evaluation.

Statistical approach has made a considerable impact on
natural language processing (NLP) research and related ar-
eas, such as part-of-speech (POS) tagging, parsing, and
speech recognition. In the bioinformatics domain, Collier
et al. [3], Nobata et al. [16], and Kazama et al. [12] em-
ployed statistical approaches (e.g., hidden Markov models,
decision trees, and support vector machines) for detecting
and classifying gene and gene product names including pro-
teins. The features used in their methods are mostly the
same as those used in rule-based approaches, that is, sur-
face clues and parts of speech.

Comparing rule-based and statistical approaches, rule-
based approaches have an advantage in a sense that rules
can be flexibly defined and extended as needed, but manu-
ally analyzing targeted domain texts and crafting rules are
often time-consuming. Statistical approaches are relatively
easy to be applied if appropriate models and training data
are provided. However, manually creating training data
(i.e., corpora annotated with protein names in this case) is
also time-consuming and needs biomedical expertise, and
an insufficient amount of training data leads to the data
sparseness problem. In general, to achieve higher perfor-
mance, more complex models are needed, which, however,
often require more training data in order to reasonably esti-
mate the increasing number of parameters.

We mainly employ a statistical approach using a prob-
abilistic model for identifying protein names with an em-
phasis on finding name boundaries. Our method solely ex-
ploits surface clues, unlike previous work, avoiding the use
of POS taggers and syntactic parsers. According to our pre-
liminary investigation on the corpus annotated with 1,745
protein names made by Franzén et al. [6], protein name
fragments can be not only nouns but also adjectives, ad-
verbs, verbs, and conjunctions, and thus POS tags are not
necessarily helpful to detect protein names and their bound-
aries. Avoiding the use of such NLP tools will reduce pro-
cessing overhead and the potential number of parameters to
be estimated. Moreover, we generalize words composing
protein names to word classes and also apply a smoothing
method in order to compensate for the limited amount of
training data.

3 Our Method

3.1 Overview

Figure 1 depicts an overview of our protein name iden-
tification system based on the method to be described in
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this section. In the preprocessing module, an input text is
partitioned into sentences and then tokenized, where tokens
are defined as words and symbols. For instance, PI 3-
kinase will be separated into four tokens, i.e., PI, 3, -,
and kinase.

input text

protein name

fragment detection
rules

output (tagged text)

filtering

protein name

boundary expansion
prob.

model

preprocessing

Figure 1. An overview of our protein name extraction sys-

tem.

Then, we identify protein names through three steps.
First, protein name fragments are detected by heuristic rules
relying on surface clues which are commonly used for pro-
tein name identification. Second, for each of the detected
protein name fragments, its name boundary is expanded
based on a probabilistic model to locate complete protein
name candidates. Lastly, a filter is applied to the candidates
so as to exclude erroneous detections, and only those with
high certainties are output. Each step is further explained in
Section 3.2–Section 3.4.

3.2 Protein name fragment detection

We use several heuristic rules to detect protein name
fragments which have been commonly used in previous
studies [6, 9, 14, 17, 20]. Words which satisfy any of the
following conditions are detected as potential protein name
fragments.

� Words that include capital letters (i.e., A, B, C, � � �, Y,
Z)

� Words that include combinations of Arabic numerals
(i.e., 0, 1, 2, � � �, 8, 9) and lower case letters (i.e., a, b,
c, � � �, y, z)

� Words with suffixes that often appear in protein name
fragments (i.e., –nogen, –ase, –in)

� Words that often appear as protein name fragments
(i.e., factor(s), receptor(s))

� Roman alphabets that often appear as protein name
fragments (i.e., alpha, beta, gamma, delta, epsilon,
kappa)

These conditions unfortunately also detect words that are
not protein name fragments. For example, if we extract all
words containing capital letters, words located in the begin-
ning of sentences are to be inevitably extracted as protein
name fragments. To decrease errors, we exclude the fol-
lowing tokens:

� Words with a capital letter in the beginning followed
by more than three lower case letters (e.g., According,
Basically)

� Words composed of only capital letters longer than six
characters. (e.g., KTPGKKKKGK)

� Only one character (i.e., A, B, � � �, Y, Z)

� Measuring units (e.g., nM, MM, mM, pH, MHz)

� Chemical formulas (e.g., CaCl2, NH2, Ca2, HCl,
Mg2)

� Words included in a stopword list. In this study, we
used the Pubmed Stopword List, which contains 133
function words1.

3.3 Protein name boundary expansion

We employ a probabilistic model for expanding/finding
protein name boundaries leftward and rightward for each of
the detected protein name fragments. Below, we will ex-
plain the details of our model, focusing on expanding name
boundaries rightward as an example.

Let �� denote one of the protein name fragments de-
tected in the previous initial detection step (see Section 3.2).
Given a fragment ��, the probability that a token ���� fol-
lowing to �� is also a protein name fragment can be ex-
pressed as a conditional probability �����������, assuming
a first-order Markov process. Likewise, the probability that
���� is not a protein name fragment is to be expressed as
�����������.

We expand protein name boundaries based on these
probability estimates. In the case where there is not a name
boundary between �� and ���� (i.e., ���� is also a pro-
tein name fragment), ����������� is expected to be greater
than �����������. Thus, we regard ���� as a protein name
fragment if the following condition holds:

����������� � ����������� (1)

However, estimating these probabilistic parameters re-
quires a large amount of training texts annotated with pro-
tein names, which are labor-intensive to create. To make
matters worse, simply using a large-scale corpus cannot be

1http://www.ncbi.nlm.nih.gov/entrez/query/
static/help/pmhelp.html
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a substantial solution due to the characteristics of protein
names: new protein names continue to be created. Previ-
ously unseen data are fatal for probability estimation such
as maximum likelihood estimation.

To reduce the influence of the data sparseness problem,
we generalize words (tokens) to word classes as shown in
Table 1. They are automatically uniquely assigned to each
word (token).

class examples

suffix in protein, oncoprotein, lactoferrin
suffix ase kinase, transferase, peptidase
word the, a, an
acronym CN, TrkA, USF
arabic num1 1, 2, 3
arabic num2 12, 76, 32
roman num I, II, III
roman alpha alpha, beta, gamma
punctuation comma (,), period (.)
symbol ), (, %, +

Table 1. Examples of word classes.

In Table 1, suffix classes (e.g., suffix in) are dynamically
generated by extracting a sequence of a vowel, one or more
consonants (if any), and either a vowel or a consonant in
the end of a word in question. However, class word will be
assigned in the case where the resulting suffix is equal to
or longer than the remainder of the word in length, so as to
prevent inaccuracies in extraction of suffixes.

Integrating the word classes to the probabilistic model,
we define bigram class models as in Equation (2), where ��
denotes the word class of ��.

����������� � ������������� � �����������

����������� � ������������� � �����������
(2)

The probabilistic parameters shown in Equation (2)
can be estimated based on corpora annotated with protein
names. However, the models still contain raw words ����,
which are likely to cause the data sparseness problem. To
avoid it, we use Witten-Bell smoothing [24] in estimating
the probability of having the word ���� from the class ����,
which we found to perform better.

Similarly, we adopt this model to expand/find protein
name boundaries leftward as well. The probability func-
tions are defined as in Equation (3), where ���� and ����
denote the token preceding to the detected protein name
fragment �� and its word class, respectively.

����������� � ������������� � �����������

����������� � ������������� � �����������
(3)

3.4 Filtering

Our ultimate goal is to automatically extract novel infor-
mation associated with proteins and cancer from the liter-
ature, where protein name identification is a fundamental
element whose performance will strongly affect the rest of
the IE process. Although high recall and high precision are
ideal, there is a trade-off between the two measures. In this
context, it is desirable that we could choose which measure
is preferred (i.e., high recall with low precision, high preci-
sion with low recall, or balanced), according to the purpose.
This can be done by restricting the system output based on
some certainty measure that indicates the extent to which
the detected protein names are likely to be actual protein
names.

We are currently using certainty score ���� defined as in
Equation (4), where �� � � ��� denotes a sequence of tokens
detected as a protein name, and � ��� and ����� denote a
frequency of � in training data and a frequency of � which
appears as a protein name fragment, respectively.

���� � � ���� �
�

�

��
���

������

where ������ �

����
���

������

� ����
�	 � ���� � �

������

� ����

��
����


(4)

������ indicates a degree to which word �� is a protein
name fragment, and ���� � � ���� is an average of all prob-
abilities for �� to ��. Probability ������ will take a high
value in the case where a token �� is predominantly used
as a protein name fragment in training texts since ������
approaches to � ����. Additionally, in the case where the
frequency of �� is small, instead we use the frequency of its
word class because low frequent data are statistically less
reliable. We set the cutoff to 3.

The word classes used in computing the certainty score
are basically the same as those used in protein name bound-
ary expansion shown in Table 1. However, only acronyms
are treated differently: more specific word classes are given.
For instance, HsMad1 will be associated with word class
acronym AaAa. The suffix of the class, AaAa, is derived as
follows: consecutive capital letters, small letters, and num-
bers are squeezed into one character A, a, and 0, respec-
tively; and then, if any, 0 in the end of strings is stripped.
The assumption for this transformation is that protein name
acronyms have some patterns in the usage of capital letters,
small letters, and numbers.
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4 Evaluation

4.1 Overview

To evaluate the effectiveness of our approach, we imple-
mented a protein name identification system based on the
probabilistic models described in Section 3 and conducted
a series of experiments, in which our system was compared
with the Yapex protein name identification system [6, 17].

There are three reasons this particular study was selected
for comparison. According to our survey, Yapex is one
of the state-of-the-art protein name identification systems,
which is based on hand-crafted rules, the system is publicly
available through a CGI program on the Proteinhalt i text
(protein concentration in text) project homepage [5], and
the annotated corpora used for Yapex’s evaluation are also
publicly available.

As mentioned above, we used the same corpora as
Franzén et al. [6] and Olsson et al. [17] used for Yapex’s
evaluation. The corpora consist of a reference corpus and
a test corpus with 99 and 101 MEDLINE abstracts, re-
spectively. The reference corpus, which is annotated with
1,745 proteins, was used for training our probabilistic mod-
els and the test corpus, which is annotated with 1,966 pro-
tein names, was used for evaluation.

4.2 Evaluation measures

Precision, recall, and F-score are used as evaluation mea-
sures. Precision is the number of protein names a system
correctly detected, divided by the total number of protein
names detected by the system. Recall is the number of pro-
tein names a system correctly detected, divided by the total
number of protein names contained in the input text. F-
score combines these measures, i.e., recall and precision,
into a single score and is defined as in Equation (5).

� -��
�
 �
�� ��
����
�� �
����

��
����
�� �
����
(5)

For judgment of correctness, we use three criteria: ex-
act, partial, and fragment matches. As for exact match,
every fragment composing a protein name has to be cor-
rectly detected to be judged as correct, whereas, for partial
match, a detected protein name is counted as correct in the
case where any fragments composing the protein name are
correctly detected. For fragment match, the counting unit
is a fragment; that is, each fragment composing a protein
name is to be judged independently whether it is correctly
detected or not.

4.3 Results and discussion

Overall performance

Table 2 shows the result of the comparative experiment.
The values in the column “Yapex” are directly cited from
the Proteinhalt i text project homepage [5], and “Prob”
denotes our system based on the probabilistic models. A
threshold for the certainty score (see Section 3.4) was set
to 0.245 in this experiment, which was derived by applying
two-fold cross-validation to the training data so as to maxi-
mize F-score for exact match. To put it more precisely, we
divided the training data into two sets of text A and B in an
equal size, and used A for computing certainty scores for
B and, in turn, used B for computing certainty scores for
A with varying the threshold. Then we took a mean of the
thresholds which maximized F-score for each set.

Table 2. A comparison between Yapex and our system on

the test corpus.

evaluation criteria Yapex Prob

recall 59.9 66.9
exact precision 62.0 60.1

F-score 61.0 63.3
recall 81.4 86.0

partial precision 84.3 77.2
F-score 82.8 81.4
recall 76.2 75.6

fragment precision 75.8 74.3
F-score 76.0 75.0

When compared to Yapex, our system obtained about
2–7 points lower precision irrespective of the criteria for
judgment of correctness (i.e., exact, partial, and fragment
matches), while our system mostly outperformed Yapex in
terms of recall. Consequently, the F-scores of our system
were found to be quite comparable to those of Yapex, de-
spite the fact that our method does not rely on POS taggers
or syntactic parsers as used in Yapex.

We evaluated our system on several criteria, i.e., exact,
partial, fragment matches and recall, precision, and F-score.
Which criterion is important depends on what purpose we
use the system for. Considering our ultimate goal, that is,
IE for the cancer-protein interaction, exact match would be
important for distinguishing number of protein names and
associating extracted information with them. Incidentally,
high recall would be preferable in the case where compre-
hensive information is needed, while high precision would
be desirable in the case where the reliability of information
is important. We will show later in this section that higher
precision can be achieved by varying a threshold for the cer-
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tainty score.

Alternative models

For generalization, we made use of a bigram class model,
which is an integration of class-class and class-word transi-
tion probabilities. To verify the effectiveness of the model,
we compared it with two other alternatives: one with-
out word classes (less generalized) and one without words
(more generalized). As an example, Equation (6) and Equa-
tion (7) show the conditions of these models for expand-
ing name boundaries rightward. Notice that Equation (6) is
identical to Equation (1).

����������� � ����������� (6)

����������� � ����������� (7)

Table 3 shows the results of protein name identification
using our proposed model and the alternatives, in which
“word” and “class” denote the word transition model de-
fined as in Equation (6) and the class transition model as in
Equation (7), respectively.

Table 3. A comparison between our proposed model and

word transition and class transition models on the test

corpus.

evaluation criteria Prob word class

recall 66.9 41.8 41.6
exact precision 60.1 41.0 48.0

F-score 63.3 41.4 44.6
recall 86.0 74.7 72.0

partial precision 77.2 73.3 83.0
F-score 81.4 74.0 77.1
recall 75.6 48.0 63.8

fragment precision 74.3 67.2 66.1
F-score 75.0 56.0 64.9

In terms of partial match, there is less difference among
these three models. This is expected by the definition of
partial match: detected protein names are judged as cor-
rect if any token contained in them is correctly detected.
In other words, if any fragment of protein names is cor-
rectly detected by hand-crafted rules in the initial detection
phase, it is regarded as correct; that is, name boundary ex-
pansion does not have much influence on the accuracy of
partial match.

For other evaluation criteria, our proposed model out-
performed the others, especially in exact match, which in-
dicates that our model is appropriately generalized and ef-
fectively incorporates word classes for protein name identi-
fication.

Performance for compound terms

Since our method is focusing on name boundary expan-
sion using word (class) transition based on bigrams, our
method is expected to be more effective particularly for
compound protein names. To demonstrate the advantage,
we evaluated Yapex and our system solely on compound
protein names. The test corpus used here is the same as
the one used above (i.e., Yapex test corpus) and contains
897 compound protein names. Table 4 shows the result, in
which Yapex’s result was obtained by submitting the test
corpus to the Yapex demo page [5] on March 27, 2003.

Table 4. A comparison between Yapex and our system

for compound protein names on the test corpus.

evaluation criteria Yapex Prob

recall 53.2 59.0
exact precision 49.7 63.7

F-score 51.4 61.2
recall 73.3 73.5

partial precision 68.5 79.3
F-score 70.8 76.3
recall 65.8 65.0

fragment precision 65.1 76.8
F-score 65.4 70.4

In the case where only compound protein names are
considered, irrespective of evaluation criteria, our system
greatly outperformed Yapex especially in exact match. This
result shows that our proposed probabilistic model is fairly
effective in expanding and finding name boundaries for
compound protein names, and that the word classes used
for generalization efficiently capture the characteristics of
protein names to a large extent.

Filtering based on certainty

Lastly, the effectiveness of the certainty score introduced
in Section 3.4 was evaluated. We varied a threshold for
the certainty score, so as to draw a recall-precision curve
in terms of exact match. Figure 2 shows the result.

The right most (and lowest) circle corresponds to the re-
sult without restriction (i.e., threshold is 0). As threshold
increased, precision gradually increased until recall fell to
around 40%. Then precision sharply increased up to around
90% with recall decreasing.

Although high precision was achieved, recall steeply
dropped at the same time. To prevent recall from dipping,
other features need to be investigated for the certainty mea-
sure; for instance, surrounding words (contextual cues) may
be effective.
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5 Conclusions

In this paper, we presented a method for identifying pro-
tein names in biomedical texts with an emphasis on protein
name boundary expansion. Our method utilizes a set of sim-
ple heuristics for initial detection of protein name fragments
and takes advantage of a probabilistic model for expand-
ing and finding protein name boundaries. The probabilis-
tic model exploits surface clues reflecting characteristics of
protein names, and combines word classes so as to avoid the
data sparseness problem.

Our method, as opposed to the previous work, does not
rely on POS taggers and/or syntactic parsers at all, since the
information given by these NLP tools are not necessarily
helpful for the task of protein name identification. This re-
duces both processing overhead and the potential number of
probabilistic parameters to be estimated. We implemented
a protein name identification system based on our proposed
method, and conducted comparative experiments to verify
the effectiveness of the method. The results demonstrated
that our system performed well and was quite comparable to
the Yapex protein name tagger which incorporates a syntac-
tic parser. Moreover, in the case where only compound pro-
tein names were evaluated, on the whole our system outper-
formed Yapex, especially in exact match. Furthermore, we
proposed a notion of certainty to filter out erroneous identi-
fications for improving precision; it was demonstrated to be
effective to incrementally raise precision at the expense of
recall.

6 Future Work

Future work would include an incorporation of wider
context in order to capture co-relations of neighboring
words. Another issue to be explored is a refinement of
the certainty measure; the certainty score currently applied
lacks the rationale of the statistical point of view. One pos-
sible extension is to utilize the probability estimates com-
puted for name boundary expansion. Additionally, we are
planning to automatically collect large-scale training cor-
pora in order to further improve our system performance.
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