
Noname manuscript No.
(will be inserted by the editor)

A Shape-based Similarity Measure for Time Series Data with
Ensemble Learning

Tetsuya Nakamura · Keishi Taki · Hiroki Nomiya · Kazuhiro Seki ·
Kuniaki Uehara

Received: date / Accepted: date

Abstract This paper introduces a shape-based sim-
ilarity measure, called the Angular Metric for Shape
Similarity (AMSS), for time series data. Unlike most
similarity or dissimilarity measures, AMSS is based not
on individual data points of a time series but on vec-
tors equivalently representing it. AMSS treats a time
series as a vector sequence to focus on the shape of the
data and compares data shapes by employing a variant
of cosine similarity. AMSS is, by design, expected to
be robust to time and amplitude shifting and scaling,
but sensitive to short-term oscillations. To deal with
the potential drawback, ensemble learning is adopted,
which integrates data smoothing when AMSS is used
for classification. Evaluative experiments reveal distinct
properties of AMSS and its effectiveness when applied
in the ensemble framework as compared with existing
measures.

Keywords Time series analysis · Similarity measures ·
Machine learning

1 Introduction

A time series is a sequence of values measured at suc-
cessive time intervals, where the intervals can be ei-
ther constant or variable. Such time series data can
arise in any disciplines, such as agriculture, chemistry,
demography, and finance. When analyzing time series
data, the most essential yet still open question is how
to best compute similarity/dissimilarity between two
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time series. Defining (dis)similarity is of central impor-
tance for many applications including time series clas-
sification, clustering, search, trend analysis, and fore-
casting [15] as their outcomes are directly affected by
the definition. However, (dis)similarity computation in-
volves several issues regarding data alignment, out-
liers, and spatial variation. To tackle them, numbers of
(dis)similarity measures have been proposed [2], such
as dynamic time warping (DTW) and longest com-
mon subsequences (LCSS). Most measures, however,
are more or less similar in a sense that they are es-
sentially dealing with individual data points compos-
ing the time series. An exception from this viewpoint
is derivative DTW (DDTW) [19], which is based on
approximated local derivatives instead of data points.

This paper introduces a similarity measure, called
the Angular Metric for Shape Similarity (AMSS). Sim-
ilar to DDTW, AMSS is not based on individual data
points. Instead, it focuses on a vector sequence equiva-
lently representing time series data. Compared with the
existing measures based on data points, an advantage
of AMSS is that it better handles spatial variation by
converting data points into vectors in comparing two
sequences. Also, AMSS adopts a variant of cosine simi-
larity to minimize the influence of outliers in similarity
computation, where outliers are defined as much bigger
or smaller data points than their immediate neighbors.

Generally speaking, a given (dis)similarity measure
is not effective for every kind of time series data; it may
be suited for some types of data, and not so for the oth-
ers. AMSS is not an exception in this regard. Empiri-
cal results will show that it is relatively robust to data
containing outliers but by nature susceptible to short-
term oscillations. Here, short-term oscillations are de-
fined as repetitive, frequent fluctuations with typically
low amplitude that do not reflect the characteristics of
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the data (e.g., white noise). Note that “outliers” and
“short-term oscillations” are distinguished throughout
this paper, although they both can be seen as noise in
general. To deal with the problem, ensemble learning is
adopted so as to effectively handle data with/without
short-term oscillations. This framework integrates dif-
ferent smoothing algorithms or (dis)similarity measures
by considering the characteristics of given data.

The rest of this paper is organized as follows: Sec-
tion 2 summarizes the related work. Section 3 details
the algorithm of AMSS and Section 4 introduces the
ensemble learning framework. Section 5 evaluates the
effectiveness of AMSS in comparison with other repre-
sentative measures. Finally, Section 6 offers conclusion
and possible directions for future work.

2 Related work

There have been many (dis)similarity measures pro-
posed for time series data. Generally, they can be cat-
egorized into lock-step, elastic, threshold-based, and
patterns-based measures [9].

For lock-step measures, the most widely known one
would be Euclidean distance [10], defined as the square
root of the sum of the squared differences between cor-
responding data points in two time series data. The
main problem of the measure is that the input se-
quences need to have the same length. A newer measure
in this category, DISSIM [11], provides a solution to
this problem. Although DISSIM can compute similar-
ity between two data with different sampling rates, the
downside is that the computation is costly. This mea-
sure could yield high classification accuracy when there
are a large amount of labeled data but in general do
not compare favorably with elastic measures discussed
next.

The family of elastic measures uses dynamic pro-
gramming to align sequences with different lengths,
including DTW [2], LCSS [7], edit distance with real
penalty (ERP) [4], and edit distance on real sequence
(EDR) [5]. The proposed measure, AMSS, also falls
in this category. DTW computes dissimilarity between
two given sequences by finding the best warping path
in their distance matrix. LCSS was originally developed
as a similarity measure between trajectories of mobile
objects. It can reduce the influence of outliers by quan-
tizing the distance between two data points into two
values, 0 and 1, representing distant and near, respec-
tively. EDR and ERP are based on edit distance origi-
nally proposed for measuring dissimilarity between two
character strings. EDR requires a threshold by which
the distance between two data points is quantized into 0

or 1. ERP is based on EDR but uses actual distance in-
stead of the dichotomous values. The sequence weighted
alignment model (Swale) [22] can be seen as another
elastic measure but not employing dynamic program-
ming. A major difference between these elastic mea-
sures and AMSS is that the former looks only at indi-
vidual data points in computing (dis)similarity, where
shapes of trajectories are not considered. In this aspect,
DDTW, which focuses on approximated local deriva-
tives, is similar to AMSS as mentioned above.

More recently, other types of (dis)similarity mea-
sures, TQuEST [1] and SpADe [6], have been pro-
posed, which are categorized as threshold-based and
pattern-based measures, respectively. The former ac-
cepts a user-provided threshold τ and converts sequence
data to so called threshold crossing, which are treated as
points in two-dimensional space composed only of data
points above τ . The output dissimilarity is defined as
the Minkowski sum. The latter, SpADe, first finds rep-
resentative matching segments, called local patterns, in
a sequence by focusing on amplitude and trajectories.
SpADe is similar to AMSS in a sense that it also looks
at the shapes of data. A critical difference is, however,
SpADe requires many parameters, including the num-
ber of local patterns, gap bound, time shifting factor,
amplitude shifting factor, time scale factor, and ampli-
tude scale factor, which must be manually tuned for
each data set, whereas AMSS has no parameter to tune
as will be described shortly.

3 Angular Metric for Shape Similarity

3.1 Basic idea

Unlike other measures, AMSS treats a time series as
a vector sequence. This conversion allows us to better
handle spatial variation. In addition, AMSS calculates
similarity between two vector sequences based on vec-
tors’ directions, not on the actual locations of the data
points in the d-dimensional space.

Figure 1 presents a simple example to illustrate how
the similarity between 1-dimensional time series data C

and Q is calculated by AMSS, where C and Q are rep-
resented as a sequence of vectors as described shortly in
the next section. In Figure 1 (a), C contains successive
vectors c1 to c6 which appear to be similar to vectors q1

to q6 in Q. Although subsequent vectors, c7 to c13, in
C are not quite similar to q7 to q14 in Q partly due to
a sudden increase by c7, AMSS will be less affected by
the large discrepancy. Figure 1 (b) shows how the vec-
tor sequences would be aligned each other. Although c7

and q7 are quite different in direction and would (lo-
cally) lead to low similarity, AMSS can properly com-
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pute global similarity between C and Q by pairing sim-
ilar subsequences and by focusing on the shapes of the
subsequences represented by vector directions. In con-
trast, other data point-based measures, such as DTW,
would fail to recognize their similarity since c7 to c13

and q7 to q14 are far apart with respect to their values.
Note that shape-based measures, such as DDTW and
SpADe, would be also effective for these types of data.
Section 5 will empirically compares AMSS with these
measures and discusses their differences.
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Fig. 1 Two time series data compared by AMSS.

3.2 Algorithm

Suppose that a 1-dimensional time series data sequence
C is composed of M + 1 elements as

C = ((p1, t1), (p2, t2), . . . , (pM+1, tM+1))

= (c1, c2, . . . , cM+1) (1)

where pm is a value (data point) and tm, m =
1, 2, . . . ,M +1, is the time when pm was measured and
m-th element (pm, tm) of C was denoted as cm for short.
By treating time tm as if it is another coordinate, the
coordinates of each point pm can be represented as a
position vector in the 2-dimensional space. Here, a new
symbol cm is introduced as a displacement vector con-
necting two successive points, which can be obtained
as their difference, written as cm+1 − cm. Then, the
whole sequence C can be equivalently represented as a
sequence Cvec of M vectors.1

Cvec = ((c2 − c1), (c3 − c2), . . . , (cM+1 − cM ))

= (c1, c2, . . . , cM ) (2)

Figure 2 illustrates an example of the conversion from
coordinates to vectors for 1-dimensional time series
data.

1 To be precise, C and Cvec are not exactly the same be-
cause the latter does not retain the position of the first ele-
ment c1.
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Fig. 2 Time series data C represented as a vector sequence
Cvec.

In the same way, let Qvec be a sequence of vectors
converted from Q = (q1, q2, . . . , qN+1) as follows.

Qvec = ((q2 − q1), (q3 − q2), . . . , (qN+1 − qN ))

= (q1,q2, . . . ,qN ) (3)

Given two vectors qn, n = 1, 2, . . . , N , in Qvec and cm

in Cvec as shown in Figure 3 (a), their (dis)similarity
can be quantified by many different measures. Among
them, most widely used ones are Euclidean distance and
cosine similarity. The former is the length between the
end points of the two vectors in the Euclidean space,
and the latter is the cosine of the angle between the
two vectors, concerning only the directions they point
to. AMSS aims to be robust to spatial variation, where
exact points of the vectors are of less importance than
their directions. Thus, this work adopts cosine similar-
ity as a principle measure which disregards exact points
or vector length.2 The definition of the standard cosine
similarity is slightly modified as

sim(qn, cm) =

0 if θ > π/2

cos θ

(
=

qn · cm

|qn| |cm|

)
otherwise

(4)

where θ is the angle between qn and cm as illustrated
in Figure 3 (b). The modification sets the similarity to
0 for θ greater than π/2, which limits the influence of
two vectors with widely different directions. Note that
θ is less than π because one of the dimensions of the
vectors is time, which increases monotonically

After calculating the similarity for every pair of vec-
tors in the sequences Qvec and Cvec, which forms an
N × M similarity matrix, AMSS identifies a warping
path W of length K:

W = (w1, w2, . . . , wK) (5)

where wk, k = 1, 2, . . . ,K, is a pair of indices (nk,mk)
indicating the corresponding vectors cnk

and qmk
.

2 Another shape-based similarity measure, DDTW, uses
Euclidean distance. However, the distance is measured be-
tween the slopes of two vectors, which is similar to (inversed)
cosine similarity in concept.
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Fig. 3 A similarity measure between two vectors.

A warping path is typically subject to several con-
straints [17]. The followings are the constraints AMSS
also complies with.

– Boundary condition. This constraint requires W

to start and end in diagonally opposite corner cells
of the similarity matrix and is expressed as w1 =
(1, 1) and wK = (N,M).

– Continuity. This constraint requires W to lie
across (diagonally) adjacent cells. More formally,
given wk = (nk,mk) and wk+1 = (nk+1,mk+1),
nk+1 − nk and mk+1 −mk equal either 0 or 1.

– Monotonicity. This constraint requires W to never
go back. That is, given wk = (mk, nk) and wk+1 =
(mk+1, nk+1), mk ≤ mk+1 and nk ≤ nk+1 always
hold.

There are many warping paths that satisfy the
above conditions, and generally the best path is se-
lected based on some cost function C(W ). This func-
tion is typically defined as the sum of the similari-
ties/dissimilarities associated with the elements of the
warping path. The present work follows this bottom-
up approach and defines the overall similarity between
Qvec and Cvec, denoted as AMSS(Qvec, Cvec), by using
the following recursive function:

AMSS(Qn, Cm) = (6)

max{AMSS(Qn−1, Cm−1) + 2sim(qn, cm),
AMSS(Qn−2, Cm−1)+2sim(qn−1, cm)+sim(qn, cm),
AMSS(Qn−1, Cm−2)+2sim(qn, cm−1)+sim(qn, cm)}

where new symbols Qn and Cm are introduced
to denote vector subsequences (q1, . . . ,qn) and
(c1, . . . , cm), respectively. Using the new no-
tations, AMSS(Qvec, Cvec) can be expressed as
AMSS(QN , CM ). To terminate the recursion,
AMSS(Q1,C1) is defined to be sim(q1, c1). Also,
AMSS(Qn, Cm) for n = 0 or m = 0 is defined as −∞
to avoid invalid paths involving undefined vectors q0

or c0.3

3 This situation can arise when assessing
AMSS(QN−2, CM−1) or AMSS(QN−1, CM−2).

The three elements appearing in the max function
in Equation (6) represent three different paths reach-
ing an intersection of n- and m-th grid lines as il-
lustrated in Figure 4 (a), where each intersection is
associated with a similarity value between the corre-
sponding vectors. The three paths are introduced as
the restriction to limit the global warping path to
the gray area in Figure 4 (b) and gives a similar ef-
fect to Itakura parallelogram [16] to speed up com-
putation. Note that the second terms, sim(qn, cm),
sim(qn−1, cm), and sim(qn, cm−1), in each element are
multiplied by 2 to give diagonal paths higher weights
equivalent to a combination of a vertical and a horizon-
tal paths. AMSS(Qn, Cm) can be efficiently computed
by dynamic programming, yielding the “best” warping
path in a sense that it maximizes the overall cumulative
similarity.

n

n-1

n-2

m-2 m-1 m

Q

C

0

(a) (b)

Fig. 4 A constraint on the warping path. The bold line in
(b) indicates a hypothetical warping path maximizing AMSS.

Note that for simplicity 1-dimensional data (Equa-
tion (1)) is used as an example in this section, but
the above discussion can be generalized to multi-
dimensional data without any modification. Also note
that, in the following sections, C and Q are used to re-
fer to Cvec and Qvec, respectively, to keep the notation
simple when they cannot be confused from the context.

3.3 An Upper Bound Function for AMSS

A strategy to speed up similarity computation is to
limit the search space by imposing a global constraint,
such as Itakura parallelogram [16] and Sakoe-Chiba
band [27]. AMSS described in the previous section
achieves this by way of Equation (6). While this con-
straint on the search space practically accelerates sim-
ilarity computation, the time complexity of AMSS is
still O(MN ) because the gray area in Figure 4 (b) ex-
tends as the length of time series increases. Other elastic
measures, including DTW, ERP, EDR, and LCSS, uti-
lizing dynamic time warping generally have the same
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time complexity O(MN ), although the aforementioned
global constraint can be applied to reduce the compu-
tation time.

Another strategy to reduce the computation time is
to introduce an upper/lower bound function. This sec-
tion describes such an upper bound function for AMSS,
denoted as UB(Q,C), based on vector composition.
Note that any upper bound function is required to sat-
isfy the following condition to avoid false dismissal.

UB(Q,C) ≥ AMSS(Q,C) (7)

With such an upper bound function and a set of
time series data {S1, S2, . . .}, the most similar time se-
ries among the set to a given input Q can be efficiently
found by the following steps.

1. Calculate AMSS(Q,S1) and assume for now that S1

is most similar to Q.
2. Calculate the upper bound UB(Q,S2) of the simi-

larity between Q and S2.
– If UB(Q,S2) is smaller than AMSS(Q,S1) calcu-

lated above, rule out S2 because it follows from
Equation (7) that AMSS(Q,S2) is smaller than
AMSS(Q,S1). That is,
AMSS(Q,S1) ≥ UB(Q,S2) ≥ AMSS(Q,S2). (8)

– If UB(Q,S2) is greater than AMSS(Q,S1),
AMSS(Q,S2) is calculated. If AMSS(Q,S2) is
also greater than AMSS(Q,S1), the most sim-
ilar sequence to S2 is updated.

3. Repeat from the step 2 above for the remaining se-
quences in the set.

3.4 Definition of an Upper Bound Function

AMSS compares vector sequences to compute their sim-
ilarity. Each input vector sequence can potentially be
converted to a simpler, shorter sequence if its shape
is smooth, which would speed up similarity computa-
tion. Consider the example in Figure 5, where a vector
sequence Q composed of ten vectors is converted to Q′

composed of three vectors by vector composition. There
are many ways to combine a subsequence of vectors and
one should take the one closely resembling the original
shape of the vector sequence Q. The closeness or differ-
ence can be measured by the shaded area in Figure 5 (b)
between the shapes of the original vector sequences Q

and the combined, resultant vector sequences Q′. A pre-
defined threshold is imposed to the area and a compact
representation Q′ is created. Briefly, consecutive vectors
qi, . . . , qj , i, j ∈ N, i < j, are incrementally combined
to create a resultant vector q′k when the area enclosed
by qi, . . . , qj and q′k does not exceed the threshold.

To compute the upper bound UB based on re-
sultant vector sequences, a straightforward approach

(a) (b)

q1

q10

q2 q1

q3
q2

Q Q''

'
'

Fig. 5 An example of vector composition applied to Q to
yield Q′.

would be to apply the original AMSS to resultant vec-
tor sequences by regarding AMSS(Q′, C ′) as an upper
bound function UB(Q,C). However it does not gen-
erally satisfy the condition expressed in Equation (7).
For instance, consider the case where a vector c1 is
compared with a resultant vector q′1 as in Figure 6
(a). In this example, the angle between c1 and q′1 is
larger than the angle between c1 and q1, and thus,
sim(q1, c1) > sim(q′1, c1). This makes the upper bound
UB(Q,C) smaller than AMSS(Q,C). In addition, be-
cause AMSS is defined as a weighted sum of the simi-
larity scores, the similarities associated with q2 and q3

need to be added up, which would make the AMSS score
for the original vectors, q1 to q3, greater than that for
the single resultant vector q′1. This case also violates the
aforementioned condition and results in false dismissal
in similarity search.
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Fig. 6 An example of a resultant vector q′1 and its associated
region sector.

To deal with the above problem, one can take advan-
tage of the angles of the original vectors (i.e., q1,q2,q3)
and represents the resultant vector (i.e., q′1) by a re-
gion, named region sector, between the smallest and
largest angles denoted by ∠minq′1 and ∠maxq′1, respec-
tively. This way, the region sector for q′1 encloses all
the original vectors, and thus, the angle between the
region sector and the vector to be compared (c1 for
this example) is always equal or less than that between
any original vector and c1. More formally, when ν-th
resultant vector q′ν is created from qi to qj , i ≤ j, of a
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sequence Q, ∠maxq′ν and ∠minq′ν are defined as follows.

∠maxq′ν = max{∠qi, . . . ,∠qj} (9)

∠minq′ν = min{∠qi, . . . ,∠qj} (10)

If a region sector is compared with a vector cm, the
smallest angle between them is equal to or smaller than
that between the vector cm and any of the original vec-
tors qi, . . . ,qj because the region sector encloses all the
original vectors. For the above example of q′1, it can be
seen that the region sector between ∠maxq′1 = ∠q1 and
∠minq′1 = ∠q3 (the gray area in Figure 6 (b)) contains
all the original vectors and that the angle between the
region sector and c1 is equal to the angle between c1

and q1.
The above discussion focused on similarity between

a vector and a region sector. Now, the concept is ex-
tended to define the similarity between two region sec-
tors. Figure 7 illustrates possible three cases in com-
paring two region sectors associated with two resultant
vectors q′ν and c′µ with respect to their relative posi-
tions.

(c)(a)

q c

q

c

(b)

q

c '

' '

'
'

'
'

'v,µ

µ

µ

µ

v v

v

v,µ

Fig. 7 Possible three cases in comparing two region sectors
associated with q′ν and c′µ.

When two region sectors overlap as in Figure 7 (a),
two sets of the original vectors contained therein can be
considered similar. Hence, the angle between the region
sectors is defined as 0 and, consequently, their similarity
becomes 1. When the region sectors are separated as in
Figure 7 (b) and (c), their similarity is calculated based
on their smallest angle θ′ν,µ between them defined as in
Equation (11).

θ′ν,µ =


∠minq′ν − ∠maxc′µ if ∠minq′ν > ∠maxc′µ
∠minc′µ − ∠maxq′ν if ∠minc′µ > ∠maxq′ν
0 otherwise

(11)

This angle is used to compute the similarity between
the resultant vectors q′ν and c′µ as

sim′(q′ν , c′µ) =
{

0 if θ′ν,µ > π/2
cos θ′ν,µ otherwise

(12)

where the similarity is defined to be 0 for θ′ν,µ > π/2,
following the definition of AMSS (see Equation (4)).

Based on the similarity function sim′ for resultant
vectors, UB is defined as a recursive function as in

Equation (13), which is slightly different from AMSS
such that Equation (7) holds.

UB(Q′
ν , C ′

µ) =

max{UB(Q′
ν−1, C

′
µ−1) + δν,µ · sim′(q′ν , c′µ),

UB(Q′
ν−1, C

′
µ) + υν,µ · sim′(q′ν , c′µ),

UB(Q′
ν , C ′

µ−1) + ην,µ · sim′(q′ν , c′µ)}
(13)

where Q′
ν = (q′1, . . . ,q

′
ν) and C ′

µ = (c1, . . . , c′µ) are sub-
sequences of Q′ and C ′, respectively, and δν,µ, υν,µ, and
ην,µ are weight functions of q′ν and c′µ defined below.

δν,µ=2min(n(q′ν), n(c′µ)) + |n(q′ν)− n(c′µ)|
υν,µ=2min(n(q′ν)−1, n(c′µ))+|(n(q′ν)−1)− n(c′µ)|
ην,µ=2min(n(q′ν), n(c′µ)−1)+|n(q′ν)− (n(c′µ)−1)|

(14)

where n(x) denotes the number of the original vectors
from which the resultant vector x is created. Intuitively,
these weights are the maximum number of similarity
values accumulated to compute the AMSS between the
original vector subsequences corresponding to q′ν and
c′µ.

Note that the vector composition method described
above can be seen as a dimensionality reduction method
for time series data since they both convert the origi-
nal data into simpler representation. There has been
much work in the area; some examples include dis-
crete wavelet transform (DWT) [3], piecewise linear
approximation (PLA) [24], symbolic aggregate approx-
imation (SAX) [20], and discrete Fourier transforma-
tion (DFT) [25]. In concept, PLA is most similar to the
vector composition method, approximating an original
time series with a set of line segments. These dimen-
sionality reduction methods might be used for upper
bounding AMSS but a different upper bound function
needs to be derived for the specific choice of a dimen-
sionality reduction method to avoid false dismissal.

Section 5.3 will report how much the upper bound
function can accelerate the computation by way of ex-
ecution time.

4 Ensemble for Time Series Data

A potential drawback of AMSS also comes from its ad-
vantage to focus on shapes of data. AMSS is designed
to recognize similarity between shapes with limited in-
fluence on spatial variation and not to be much affected
by outliers. However, it is by nature vulnerable to short-
term oscillations with low amplitude that do not reflect
the characteristics of true data, since AMSS looks at
every swing of data in computing similarity no matter
how small the amplitude is. An example of such time
series data is shown in Figure 8, where the true data
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Fig. 8 An example of time series data having short term
oscillations with low amplitude.

is given by a sine function but Gaussian noise is im-
posed on it. Due to the added noise, the time series
data exhibit short-term oscillations.

A straightforward solution for the problem regard-
ing short-term oscillations is to smooth out data before
computing (dis)similarity. A downside of smoothing is
that it may also reduce important, subtle behavior that
characterizes some classes. Also, it may be rather harm-
ful to data not involving short-term oscillations. Fur-
thermore, there are many alternative smoothing algo-
rithms, of which more appropriate ones for given data
are not known. Therefore, it would be desirable if multi-
ple smoothing algorithms (including not applying one)
are considered in computing similarities for the given
data.

Another solution is to employ multiple
(dis)similarity measures, such as AMSS and DTW. The
rationale behind is that, similarly to the idea of using
multiple smoothing algorithms, each (dis)similarity
measure has different properties and would have some
types of data for which it works better. Section 5.4 will
later show that different measures are good at different
types of data and that their behavioral similarities can
be quantified by correlation coefficients.

When AMSS is used for classification, both of the
solutions can be implemented in the framework of en-
semble learning [8], which is used to integrate multi-
ple classifiers and generally produces superior perfor-
mance to single classifiers.4 The simplest form of en-
semble learning trains each classifier separately and in-
tegrates the output of all classifiers by, for example, vot-
ing. However, this framework is not effective when the
accuracy of a classifier varies on different data. More
effective learning framework considers the interaction
among multiple classifiers.

4 Ensemble approaches have been applied to time-series
classification in the past [14,26]. However, none has at-
tempted to incorporate different smoothing techniques in an
ensemble framework.

This study utilizes one of such frameworks, called
collaborative ensemble learning [23], for its character-
istics to effectively handle diverse data sets; it takes
different types of classifiers and learns their weights
through a simultaneous and iterative process for given
data. Additionally, in classifying a new test instance,
it dynamically gives appropriate weights to the predic-
tions of the classifiers in accordance with their predicted
class labels and corresponding confidence values learned
in the training phase. These features become crucial
when there are different target data sets with different
characteristics, where no single classifier (smoothing al-
gorithm or (dis)similarity measure in this case) is sat-
isfactory for all the data sets. There are other ensemble
approaches, such as AdaBoost [12] and negative cor-
relation learning [21], which, however, have not been
tested with different types of classifiers. The effect of
using different smoothing algorithms or (dis)similarity
measures in this study could be seen as using different
types of classifiers.

In the collaborative ensemble learning, each classi-
fier is learned on a training data set resampled for the
classifier through an iterative process examining indi-
vidual classifiers’ performance on given training data.
Figure 9 depicts the basic framework of collaborative
ensemble learning involving three classifiers, C1, C2, and
C3, each having different characteristics due to different
training data. In this work, these classifiers are actu-
ally of the same type to be described later. Here, a
calligraphic letter C is used to distinguish it from time
series C. In essence, when Ci misclassifies a training in-
stance, the instance will be fed to Cj , j 6= i, for training
at the next round, where Cj may correctly classify the
instance. Owing to this collaboration, each classifier is
trained more effectively for a particular portion of the
training data that the classifier is good at classifying.

misclassified examples

correctly classified examples

1

2 3

 C

 C  C

Fig. 9 Illustration of collaborative ensemble learning.

The formal procedure of the collaborative ensemble
learning is presented below.
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1. Set the number of rounds r to 1. Given a labeled
data set D, set the weight wi,j of each labeled in-
stance dj , j ∈ {1, . . . , |D|}, for each classifier Ci,
i ∈ {1, 2, . . . , N}, to the same value, 1/|D|, where
N is the number of classifiers. The weight wi,j in-
dicates the probability that dj is drawn for Ci from
the whole training data.

2. For each classifier Ci, construct a training data set
Dr

i of size |D| by sampling D according to the
weights wi,j .

3. Train each classifier Ci using the training set Dr
i .

4. If r exceeds the predefined number of iterations pro-
vided by a user, then finish the learning process.

5. Classify the entire training data by each classifier
Ci.

6. For each instance dj and each classifier Ci, update
the weights w as follows:
– If a classifier Ci misclassified a training instance

dj , the weights wk,j , k 6= i, for the other classi-
fiers Ck are increased according to the error rate
of the classifier Ci [13].

– Likewise, if Ci correctly classified dj , the weights
wk,j are decreased according to the error rate of
Ci.

7. Increment r and repeat from the step 2 above.

Then, given an unseen test instance, all the i× r clas-
sifiers learned through the procedure are applied and
their outputs are combined by considering their error
rates and class separabilities so as to predict a sin-
gle most likely class for the instance. See the original
work [23] for more details.

Using this collaborative ensemble learning frame-
work, different smoothing algorithms can be combined
as follows to tackle the potential problem of AMSS
caused by short-term oscillations. First, the data set
D is preprocessed by N different smoothing algorithms
Si, i = 1, 2, . . . , N , separately, resulting in N different
data sets Di. Then, in the above procedure 2, samples
(training data Dr

i ) for each classifier Ci are drawn from
the corresponding data set Di. In this setting, differ-
ent smoothing algorithms with the same type of clas-
sifier (e.g., 1-nearest neighbor (1NN)) are used to pro-
duce different outputs. That is, classifiers are the same
but the training data for each classifier is differently
smoothed.

5 Evaluation

5.1 Overview

This section investigates the effectiveness of the pro-
posed similarity measure, AMSS through various ex-

periments on the data sets obtained from the UCR
Time Series Classification/Clustering page [18]. Using
the UCR data sets, AMSS is compared with existing
(dis)similarity measures in classification performance.
Then, AMSS in the ensemble framework is evaluated.
All the experiments reported in the evaluation were ex-
ecuted on a PC with a 2.4GHz Intel Core 2 Duo pro-
cessor and 2GB of RAM. The source codes for the ex-
periments were written in Java.

5.2 Initial results

The section studied the properties of AMSS in the
context of classification in comparison with other
(dis)similarity measures, specifically, Euclidean dis-
tance, DTW, DDTW, EDR,5 and SpADe. A simple
1NN approach was adopted to allow fair comparison
with less parameter to tune. By a 1NN classifier, the
class label for a given sequence is predicted as the
class label of its nearest neighbor in the training set.
The classification performance is reported in error rate,
which indicates a proportion of misclassified sequences
in the test set. Table 1 summarizes the experimental re-
sults for each (dis)similarity measure on different data
sets, where boldface indicates the best performance
across different measures. The results for Euclidean dis-
tance and DTW were taken from the UCR Time Series
Classification/Clustering page [18] and those for EDR
and SpADe were from Chen et al.’s paper [6]. According
to Keogh et al. [18], the results of DTW were obtained
with the best width of Sakoe-Chiba band by a search
over the training set. Lastly, the results for DDTW are
based on our own implementation with no warping con-
straints. Appendix B will report the performance of
AMSS in comparison with a wider set of (dis)similarity
measures based on the methodology described in Ding
et al. [9] .

As shown, DTW achieved the lowest error rates for
six data sets; EDR, SpADe, and AMSS for five data
sets; and Euclid and DDTW for two data sets. This re-
sult indicates that no single measure was effective for
all the data sets with different characteristics. In the
following, AMSS is compared with DTW as a represen-
tative, relatively effective data point-based measure to
discuss the properties of AMSS.

First, let us discuss the data on which AMSS per-
formed better. Figure 10, for example, shows an input
sequence as solid line from the “OSU Leaf” data set and
other sequences as dotted line found as the most similar

5 EDR was chosen because it is reported to be the most
accurate measure among the edit-distance family, including
LCSS and ERP [9].
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Table 1 Classification performance in error rates of different
(dis)similarity measures using 1NN.

Data set Euclid DTW DDTW EDR SpADe AMSS

50Words 0.369 0.242 0.308 0.198 0.215 0.242
Adiac 0.389 0.391 0.414 0.384 0.319 0.345
Beef 0.467 0.467 0.467 — — 0.433
CBF 0.148 0.004 0.408 0.011 0.020 0.522
Coffee 0.250 0.179 0.179 — — 0.143
Gun-Point 0.087 0.087 0.007 0.020 0.007 0.000
ECG 0.120 0.120 0.170 0.100 0.130 0.170
Face (all) 0.286 0.192 0.127 0.194 0.214 0.265
Face (four) 0.216 0.114 0.375 0.034 0.034 0.261
Fish 0.217 0.160 0.103 0.080 0.017 0.040
Lightning-2 0.246 0.131 0.328 0.148 0.278 0.180
Lightning-7 0.425 0.288 0.425 0.301 0.315 0.301
OliveOil 0.133 0.167 0.200 — — 0.200
OSU Leaf 0.483 0.384 0.120 0.215 0.132 0.103
Swedish Leaf 0.213 0.157 0.115 0.096 0.125 0.104
Syn. Control 0.120 0.017 0.433 0.040 0.080 0.523
Trace 0.240 0.010 0.000 0.040 0.000 0.000
Two Patterns 0.090 0.002 0.003 0.002 0.005 0.092
Wafer 0.005 0.005 0.022 0.007 0.012 0.011
Yoga 0.170 0.155 0.180 0.194 0.123 0.158

sequences (i.e., 1NNs) by AMSS (top figure) and DTW
(bottom figure), where AMSS assigned the right class
and DTW did not.
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Fig. 10 1NNs shown as dotted lines found by AMSS (top)
and DTW (bottom) for the same “OSU Leaf” test sequence
shown by solid lines. AMSS’s 1NN has the same class label
as the test sequence and DTW’s one does not.

On a cursory look, one may think that DTW found
a good sequence more closely overlapping with the in-

put sequence than that found by AMSS. However, care-
fully looking at the shapes of sequences, DTW’s 1NN
involves some fluctuation that does not have a good
match in the input sequence. In contrast, AMSS’s 1NN
has relatively different amplitude and phase from those
of the input sequence but more similar trajectory. This
example indicates that AMSS is more robust for data
involving amplitude and time shifting by focusing on
vector directions or shapes.

On the other hand, Figure 11 shows the case from
the CBF data where AMSS failed to find the cor-
rect 1NN and DTW succeeded. As can be seen, the
CBF data demonstrate short-term oscillations. Because
DTW looks at the locations of the data points, the in-
fluence of the small fluctuations was limited. On the
other hand, AMSS focuses on directions of vectors and
thus was heavily affected by each fluctuation, leading
to the 1NN with a different (wrong) class from the test
instance. Although the details are omitted here, one
can make similar observations on the Synthetic Con-
trol data, where AMSS often fails due to short term
oscillations.
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Fig. 11 1NNs shown as dotted lines found by AMSS (top)
and DTW (bottom) for the same “CBF” test sequence shown
as solid lines. DTW’s 1NN has the same class label as the test
sequence and AMSS’s one does not.

Here, it is interesting to see that the other (partly)
shape-based measures, DDTW and SpADe, exhibit
somewhat similar behaviors to AMSS. Looking at the
CBF and Synthetic Control data, DDTW also appears
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to suffer from short-term oscillations; the error rate was
0.408 and 0.433 as compared with 0.004 and 0.017 by
DTW, respectively. Also, DDTW achieved good perfor-
mance close to AMSS on the OSU Leaf data (the er-
ror rate was 0.116). On the other hand, SpADe showed
moderately good performance on CBF, Synthetic Con-
trol, and OSU Leaf for which the error rates were found
to be 0.020, 0.080, and 0.132, respectively. SpADe per-
formed relatively well on those data sets due to the
fact that it considers both data points and shapes in
the form of their weighted sum. Note that, although
SpADe could be fine-tuned for a given data set, those
weights as well as many other parameters need to be
manually set by trial and error. In contrast, AMSS and
DDTW do not require such tweaking.

Although similar in the idea, an important distinc-
tion between AMSS and DDTW is that the latter uses
the difference of the approximated local derivatives as
the distance between two data points, which can be
quite large when there is a sudden increase/decrease
(e.g., outlier) in one time series. For AMSS, on the other
hand, the influence of such an outlier would be limited
due to the use of cosine similarity.

To contrast the difference between AMSS and
DDTW, a time series Q was randomly selected
from the test data for each UCR data set and
a hypothetical sequence Q′ was created by replac-
ing a value of Q with an outlier, which was ar-
bitrarily set to 3.0. Then, their (dis)similarity was
computed by AMSS and DDTW, i.e., AMSS(Q,Q′)
and DDTW(Q,Q′), and self-(dis)similarity of the
original data, i.e., AMSS(Q,Q) and DDTW(Q,Q).6

Their absolute differences, ∆AMSS and ∆DDTW, de-
fined respectively as |AMSS(Q,Q′)−AMSS(Q,Q)| and
|DDTW(Q,Q′)−DDTW(Q,Q)|, are attributed solely
to the inserted outlier, and thus, indicate the suscepti-
bility to it. To directly compare the differences, ∆AMSS

and ∆DDTW were normalized by the within-class stan-
dard deviation SD (for the class to which Q belongs)
of AMSS and DDTW, respectively. Figure 12 shows
the bar plots of the normalized absolute difference for
DDTW (left figure) and AMSS (right figure), where the
figures on the plots are exact values for those exceed-
ing the plot range. The order of the data sets is the
same as Table 2. That is, the leftmost and rightmost
are 50Words and Yoga, respectively. As can be seen,
DDTW’s absolute difference way exceeded 2 × SD for
all but two data sets, whereas AMSS’s one is gener-
ally smaller. These results indicate that AMSS is more
robust than DDTW to data containing outliers.

6 DDTW(Q, Q) always becomes 0, whereas AMSS(Q, Q)
linearly increases with the length of Q because AMSS is de-
fined as a sum of similarities between matched subsequences.

5.3 Efficiency in Similarity Computation

Using the upper bound function UB(Q′, C ′) in Equa-
tion (13), the execution time of classification was
recorded for each UCR data set. Fig. 13 shows the bar
plot summarizing how much speed-up was observed,
where the results are shown in the same order as Ta-
ble 1. The “Wafer” class, the tallest bar, most benefited
from the upper bound; the execution time decreased
by 94% as compared with AMSS with no upper bound
(16.7 times faster). On the other hand, the execution
time for classes with short-term oscillations, such as
CBF and Synthetic Control, slightly increased by up
to 2%. Overall, execution time decreased by 32% on
average.
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Fig. 13 Percent reduction in execution time for the UCR
data sets.

It should be reminded that the upper bound func-
tion and the procedure to create resultant vectors de-
scribed in Section 3.4 are solely for efficiency and do
not affect the classification accuracy. In other words,
whether they are used or not, the classification perfor-
mance of AMSS in Table 1 does not change.

5.4 AMSS in ensemble

This section examined AMSS in the ensemble frame-
work, which incorporates smoothing algorithms or dif-
ferent (dis)similarity measures for handling different
types of data, for example, with/without short-term os-
cillations. First, for smoothing, two algorithms, moving
average and low-path filter, were experimentally cho-
sen. In essence, moving average takes an average of the
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Fig. 12 Absolute differences, ∆DDTW and ∆AMSS, normalized by within-class standard deviation for DDTW (left) and
AMSS (right).

data points in a sliding window to replace the value
of the middle data point in the window, and low-path
filter reduces the amplitude of fluctuations with high
frequency.

Following the procedure outlined in Section 4, an ex-
periment was carried out on the UCR data sets, where a
window size of 7 was used for moving average and 10 el-
ements with highest frequency after the discrete Fourier
transform were discarded for low-path filter. These pa-
rameters, among the values tested, gave the lowest error
rates for AMSS without ensemble on the training data.
The tested values were all the odd numbers between
1–41 for the window size and all the numbers between
1–21 for low-path filter. Then, using the best parame-
ters identified above, the appropriate number of itera-
tions in ensemble learning was explored on the training
data. There was no significant difference in performance
among the tested values, 20, 30, 40, and 50, and thus
the smallest (i.e., 20) was chosen considering the com-
putation time. Note that, although not attempted here,
they could be optimized for individual data sets to fur-
ther improve the classification performance.

Because the collaborative ensemble learning in-
volves a random factor in constructing training data
sets, the experiment was repeated 10 times for each
data set and the mean error rate was calculated. The
results are presented in Table 2. The columns “none”,
“MA” (moving average), and “LPF” (low-path filter)
show the classification error rates when they are used
for smoothing, and the column “Ensemble” shows those
for the collaborative ensemble learning. A plus sym-
bol (+) indicates improvement from “none”. Note that
“none” is the same as AMSS without smoothing and
the error rates are exactly the same as those presented
in Table 1.

As can be seen, applying either moving average or
low-path filter reduced the average error rates as com-
pared to “none”. Also, using the multiple classifiers

Table 2 Classification error rates for the individual classi-
fiers and the collaborative ensemble method.

Data set
Individual classifier

Ensemble
None MA LPF

50Words 0.242 0.224+ 0.231+ 0.219+

Adiac 0.345 0.358 0.307+ 0.276+

Beef 0.433 0.467 0.467 0.450
CBF 0.522 0.160+ 0.043+ 0.046+

Coffee 0.143 0.107+ 0.036+ 0.014+

ECG 0.170 0.120+ 0.120+ 0.120+

Face (all) 0.265 0.273 0.300 0.265
Face (four) 0.261 0.227 0.125+ 0.231+

Fish 0.040 0.051 0.046 0.053
Gun-Point 0.000 0.013 0.013 0.012
Lightning-2 0.180 0.148+ 0.180+ 0.146+

Lightning-7 0.301 0.247+ 0.384 0.244+

OliveOil 0.200 0.167+ 0.167+ 0.180+

OSU Leaf 0.103 0.149 0.136 0.130
Swedish Leaf 0.104 0.115 0.120 0.076+

Syn. Control 0.523 0.180+ 0.073+ 0.045+

Trace 0.000 0.000 0.000 0.000
Two Patterns 0.092 0.000+ 0.003+ 0.001+

Wafer 0.011 0.020 0.010+ 0.006+

Yoga 0.158 0.143+ 0.155+ 0.132+

Average 0.205 0.158+ 0.146+ 0.132+

in the ensemble framework further improved the per-
formance. The improvement from the original AMSS
(“none”) to “Ensemble” was statistically significant at
the 5% level based on a pairwise Wilcoxon signed rank
tests (p = 0.02). Incidentally, the difference between
the average error rate of 0.132 by the ensemble and
that of 0.164 by DTW (calculated from Table 1) was
not statistically significant (p = 0.19).

Then, another strategy to combine different
(dis)similarity measures, instead of different smooth-
ing algorithms, was tested using the ensemble frame-
work. One can expect the greatest effect when diverse
and high-performing measures are combined. To quan-
tify the similar/different behaviors between these mea-
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Table 3 Pearson’s correlation coefficients of error rates on
the UCR data sets between different (dis)similarity measures.

Euclid DTW DDTW EDR SpADe AMSS

Euclid 1.000 0.875 0.368 0.807 0.689 0.169
DTW 0.875 1.000 0.292 0.902 0.736 0.070
DDTW 0.368 0.292 1.000 0.420 0.546 0.871
EDR 0.807 0.902 0.420 1.000 0.893 0.223
SpADe 0.689 0.736 0.546 0.893 1.000 0.337
AMSS 0.169 0.070 0.871 0.223 0.337 1.000

sures, Table 3 shows the correlation coefficients of the
error rates on the UCR data sets. It can be observed
that AMSS’s correlations with other measures except
for DDTW are generally low. This result suggests the
distinctive properties of AMSS, coming from the unique
representation of the data by vector sequences.

Considering the results in Table 3, AMSS and DTW
were chosen as shape- and data point-based measures,
respectively, and they were combined in the ensemble
framework. Briefly, this combination yielded an average
error rate of 0.142 on the UCR data sets. It is indeed
lower than AMSS or DTW alone (their average error
rates are 0.205 and 0.164, respectively) but slightly be-
hind 0.132 where AMSS, MA, and LPF were combined.
It may be possible that one could achieve greater perfor-
mance by exhaustive search for the best combination,
which is left for future work.

Lastly, whether or not other (dis)similarity mea-
sures could benefit from smoothing as well was investi-
gated. Another experiment was carried out on the UCR
data sets, where Euclidean distance and DTW were ap-
plied after smoothing by moving average. The window
size was set to 7 as in the previous experiment. For Eu-
clidean distance, the average error rate over the data
sets slightly decreased (improved) from 0.234 to 0.211
and that of DTW without warping bands rather deteri-
orated from 0.164 to 0.226. This is due to the fact that
these measures are based on individual values of data
in contrast to AMSS which focuses on vectors spanning
between two successive data points. AMSS is, by de-
sign, sensitive to fluctuations and can be improved by
smoothing out short-term oscillations with long-term
trend being left. On the other hand, those data point-
based measures are by nature relatively robust to short-
term oscillations with low amplitude as they do not
greatly change data points. Thus, smoothing brings a
less or even harmful effect. Taken together, these re-
sults indicate the potential of AMSS when short-term
oscillations are properly handled within the ensemble
framework.

6 Conclusion and future work

This paper introduced a shape-based similarity mea-
sure, AMSS, for time series data. Unlike other exist-
ing measures, AMSS first converts a sequence of data
points to a sequence of vectors spanning between two
consecutive data points, which enables AMSS to prop-
erly handle spatial variation. Also, by employing a vari-
ant of cosine similarity between two vectors, AMSS is
less affected by outliers. The experiments proved that
AMSS was especially effective for data involving am-
plitude and time shifting as designed. At the same
time, the initial observations confirmed that AMSS was
susceptible to short-term oscillation. To overcome the
problem, a framework of ensemble learning was applied,
where two different smoothing techniques, moving av-
erage and low-path filter, were incorporated. The ex-
periments showed an improvement in error rates for
most classes and that average error rate over the 20
UCR data sets decreased by around 36% and 20% from
AMSS and DTW alone, respectively.

Future work would include studying the optimal
data representation for AMSS. As discussed above,
AMSS is more sensitive to short-term oscillations,
which require preprocessing (e.g., smoothing). As
demonstrated, ensemble approaches are a possible so-
lution, which, however, are computationally costly.
It would be desirable to treat all types of data
with/without oscillations in the same single procedure
through improved data representation.
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Appendix

AMSS was compared with other (dis)similarity measures: Eu-
clidean distance, DTW, DDTW, EDR, and SpADe as shown
in Table 1. However, there is more comprehensive compari-
son reported by Ding et al. [9], who used k-fold cross vali-
dation for parameter tuning and evaluation for 13 different
(dis)similarity measures. The value of k was individually set
for each UCR data set (or class).

This paper did not take Ding et al.’s results for the com-
parison in Table 1 because of the significant amount of com-
putation needed for the ensemble experiments with the way
they tuned parameters through cross validation. For com-
pleteness, however, AMSS (without the ensemble framework)
is compared with those reported by Ding et al. with their
evaluation scheme. The results are summarized in Table 4,
where boldface indicates the best performance (lowest error
rates) across different measures.7 “DTW (w)” and “LCSS
(w)” indicate DTW and LCSS with warping constraint, re-
spectively. All the results but DDTW were taken from Ding et
al.’s paper [9], and DDTW’s results are based on our own im-
plementation with no warping window. For this experiments,
the same number of splits k as Ding et al. was used so that all
the results are directly comparable to theirs. Among the 20
data sets, AMSS performed the best for 10 data sets including
one tie.

In terms of the number of data sets for which error rates
are lowest, AMSS was found to be the best (dis)similarity
measure in this particular setting. As discussed in Section 5.2,
however, no single measure works for every type of data. For
example, simple Euclidean distance performed better than all
the other measures, including AMSS, for the “Beef” data set.
More work is needed to understand the interaction between
the properties of similarity measures and the characteristics
of the target data types.

7 Note that these results are different from Table 1 due to
the different treatment of the training data.
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