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Accelerated by the technological advances in the biomedical domain, the size
of its literature has been growing very rapidly. As a consequence, it is not
feasible for individual researchers to comprehend and synthesize all the infor-
mation related to their interests. Therefore, it is conceivable to discover hidden
knowledge, or hypotheses, by linking fragments of information independently
described in the literature. In fact, such hypotheses have been reported in the
literature mining community; some of which have even been corroborated by
experiments. This paper mainly focuses on hypothesis ranking and investi-
gates an approach to identifying reasonable ones based on semantic similarities
between events which lead to respective hypotheses. Our assumption is that
hypotheses generated from semantically similar events are more reasonable.
We developed a prototype system called, Hypothesis Explorer, and conducted
evaluative experiments through which the validity of our approach is demon-
strated in comparison with those based on term frequencies, often adopted in
the previous work.

1. Introduction

The biomedical literature has been rapidly growing at a rate no one can keep
up with, which makes it infeasible for individual researchers to comprehend all
the information related to their interests 1)–3). For this reason, it is conceivable
that much potential knowledge, or hypotheses, remains undiscovered in the large
amount of data. In fact, such hypotheses have been reported in the literature min-
ing community; some of which have even been corroborated by experiments 4)–9).

As the pioneering work for biomedical hypotheses discovery, Swanson 8) pre-
dicted that fish oil would be effective for the treatment of Raynaud’s disease
by manually investigating and linking multiple information independently de-
scribed in the literature. This hypothesis was later validated by Digiacomo 4).

†1 Graduate School of System Informatics, Kobe University

Following Swanson, other research groups reexamined and extended his work
on hypothesis discovery in an attempt to automatically identify promising hy-
potheses 10)–21). However, their methods typically require manual intervention
to generate hypotheses and do not have a mechanism to properly deal with low
frequency terms/concepts since they are basically based on term frequencies.

In hypothesis discovery, it is indeed possible that there is promising, hidden
knowledge derived from infrequent terms and, due to their infrequencies, those
hypotheses can be easily overlooked despite of their importance. Thus, a discov-
ery framework should not be dependent (solely) on term frequencies. Also, if we
do not use term frequencies, it is crucial to focus on only significant topics closely
associated with the main theme of an article since considering many infrequent
terms indiscriminately would lead to numerous, meaningless hypotheses.

Motivated by the background, the aim of this paper is to investigate an auto-
matic hypothesis generation framework with a focus on a ranking function which
considers not term frequencies but semantic similarity between two events that
lead to a hypothesis. Our main assumption is that semantically similar events
yield a more reasonable hypothesis.

The rest of this paper is organized as follows. Section 2 summarizes the pre-
vious work most related to the present paper. Section 3 details our developed
framework for hypothesis generation and ranking based on event similarities. Sec-
tion 4 introduces our hypothesis generation system, Hypothesis Explorer, which
helps us find new hypotheses by visualizing explicit/implicit relationships be-
tween concepts and their supporting information. Section 5 evaluates our hy-
pothesis ranking functions in comparison with term frequency-based functions.
Finally, Section 6 concludes with a brief summary and possible future directions.

2. Related Work

Swanson’s framework for hypothesis discovery is based on the idea, so called
the ABC syllogism. It discovers an implicit association between two concepts,
such as “A causes C,” when it is well acknowledged that “A causes B” and “B
causes C” while A and C do not have an explicit relationship reported in the
literature. This one directional exploration starting from only one concept, A, for
hypothesis discovery is called “open” discovery. Hypothesis discovery can also be

9 c© 2011 Information Processing Society of Japan



10 Hypothesis Ranking Based on Semantic Event Similarities

Fig. 1 Open and closed discovery.

accomplished bidirectionally given two concepts, A and C, which focuses more on
identifying intermediate concepts that connects the two starting concepts and is
called “closed discovery”. The left figure in Fig. 1 provides an example of open
discovery which attempts to find indirect, undiscovered relationships between a
given entity (A) and other entities (C ) where the C terms can be any concepts.
On the other hand, the right figure in Fig. 1 is an example of closed discovery
which aims to find intermediate concepts (B) that provide logical connections to
the given two concepts, A and C. Note that in this case A and C may have a
known association but their connections are unknown.

For open discovery, it may sound trivial to predict the potential relationship
between A and C provided that the relationships between A and B and between B
and C exist. However, it is not necessarily the case for humans if the two relations
are found in two different literature representing two different specialties, such
as nutrition and genetics, or if they reside in one literature which, however, is
too large to look through for individuals. Both situations are conceivable in the
biomedical domain given the overwhelming publications and various specialties.

Motivated by Swanson’s work, several other researchers, as well as Swanson
himself 22),23), have developed computer systems to aid hypothesis discov-

ery 10)–21). Some of them support only closed discovery 19),21)–23), while our system
presented in Section 4 can be applied to both open and closed discovery. In the
following, we focus on two important attempts most related to the present work.

Weeber 15) implemented a system, called DAD-system, to support hypothesis
discovery by taking advantage of a natural language processing (NLP) tool. The
key difference of his system from the others was that Weeber used the Unified
Medical Language System (UMLS) Metathesaurus �1 for representing and filter-
ing concepts. Unlike Swanson 22), each sentence in textual portions of MEDLINE
records was mapped to the concepts defined in the UMLS Metathesaurus by the
MetaMap program 24) instead of extracting words or phrases from the sentence.
For example, MetaMap converts an input sentence “Platelet aggregation is known
to be high in patients with Raynaud’s syndrome.” to five concepts: “Platelet ag-
gregation,” “Known,” “High,” “Patients,” and “Raynaud’s disease,” where word
variants (e.g., singular vs. plural, synonyms, inflection) can be mapped to a sin-
gle concept. The identified concepts are then filtered based on their semantic
categories; each concept in Metathesaurus is assigned one or more semantic cat-
egories called semantic types, such as “Body location or region,” “Vitamin,” and
“Physiologic function.” �2 Given a set of semantic types of particular interest,
this filtering step could drastically reduce the number of potential concepts to a
manageable size.

Srinivasan 14) developed another system, called Manjal �3, for hypothesis dis-
covery. In contrast to the previous work which mainly used the textual portion of
MEDLINE records (i.e., titles and abstracts), she focused solely on Medical Sub-
ject Headings (MeSH) terms assigned to MEDLINE records in conjunction with
the UMLS semantic types and investigated their effects for discovering implicit
associations. MeSH is a thesaurus maintained by National Library of Medicine
(NLM) for indexing articles in life sciences. Given a starting concept A, the Man-
jal system conducts a MEDLINE search for A and extracts MeSH terms from the
retrieved MEDLINE records as B concepts. Then, the B concepts are grouped

�1 UMLS is an NLM’s project to develop and distribute multi-purpose, electronic knowledge
sources and its associated lexical programs. http://www.nlm.nih.gov/research/umls/

�2 There are 134 semantic types in total.
�3 http://sulu.info-science.uiowa.edu/Manjal.html
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into the corresponding UMLS semantic types according to a predefined mapping.
Similar to the approach by Weeber 15), the subsequent processes can be limited
only to the concepts under the specific semantic types of interest, so as to nar-
row down the potential pathways. A difference from Weeber’s approach is that,
besides it used only MeSH terms, she used the TFIDF term weighting scheme 25)

to rank B or C concepts so as to make potentially important connections more
noticeable to the user. TFIDF is an abbreviation of “term frequency-inverse doc-
ument frequency”, originally developed for information retrieval to quantify the
importance of a term to specify a document containing the term.

For hypothesis generation, we will take an approach similar to Weeber’s but
utilizes our semantic-based ranking functions described shortly to give an order
to numerous hypotheses generated. The ranking functions will be evaluated in
comparison with frequency-based functions, such as TFIDF.

3. Proposed Framework

This section first describes how to generate hypotheses based on a biomedi-
cal entity network extracted from the literature. Then, a new criterion, called
hypothesis reasonability, is introduced to identify promising hypotheses. We in-
stantiate two variants of ranking functions based on event similarities along with
two frequency-based ranking functions typically used in the previous work.

3.1 Hypothesis Generation
To generate hypotheses, we first construct a biomedical entity network, which

requires named entity recognition and relationship extraction. For these pro-
cesses, we take an approach similar to Weeber 15). Weeber used MetaMap pro-
gram 24) to obtain UMLS concepts and extracted relationships between concepts
based on their co-occurrences in titles and abstracts of MEDLNE records. Differ-
ent from Weeber, who used all concepts MetaMap output, we use only concepts
with the highest mapping scores to raise the precision of entity recognition. Also,
we use only titles to avoid producing many meaningless hypotheses. We chose
titles because they can be seen as a concise, high quality summary of the articles
as reported in the functional genomics domain 26). In addition, it is expected
that resulting hypotheses become more precise by limiting our focus to titles and
MeSH as reported by Swanson, et al 23). Another reason to use titles is our simpli-

Fig. 2 Entity network constructed from the literature.

fied assumption to regard co-occurring concepts as related; The relation between
two co-occurring concepts may be described either affirmatively or negatively,
which ideally needs to be determined through syntactic analysis. For example,
if two relationships between A and B and between B and C are extracted sim-
ply based on co-occurrences from two sentences, “A causes B” and “B does not
cause C”, it would result in a false hypothesis “A (causes) C”. In the present
work, however, we use co-occurrences for simplicity and attempt to minimize the
risk to produce such false hypotheses by looking at only titles which were found
often affirmative by our informal observation. Another difference from Weeber’s
approach is that we consistently apply a set of UMLS semantic types for fil-
tering, whereas Weeber arbitrarily used two different sets of semantic types for
intermediate B concepts and for terminal C concepts, respectively.

We call a co-occurrence of two concepts in an article title an event disregarding
the type of the event. Then, by merging common concepts of the extracted events,
an entity network can be constructed. Figure 2 shows an example of an entity
network consisting of such binary relationships extracted from the biomedical
articles, d1, d2, d3, . . ., dn. In Fig. 2, event c1–c2 (composed of the two concepts
c1 and c2) was extracted from d1, event c3–c5 was extracted from d2, event c1–c3

was extracted from d3, and so on. We can discover a potentially new relationship
c1–c5 by following the path of the events c1–c3 and c3–c5. It should be emphasized
that it is only possible to discover these indirect relationships by gathering the
information found in separate articles, d2 and d3, together.

More formally, hypothesis generation can be performed by exploring the entity
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Fig. 3 Example of A, B, and C terms.

network with a given starting point. The search is terminated when another con-
cept of interest given by a user is found or when exploration reaches a specified
depth. In this paper, we limit our discussion to a depth of two for simplicity.
The discovered paths between starting and ending points are interpreted as hy-
potheses except for closed chains in the network. As a matter of convenience,
we call the starting, ending, and intermediate concepts A term, C term, and B
term, respectively. Figure 3 shows the resulting pathways aligned by A, B, and
C terms based on Fig. 2, where node c1 was used as a starting point for search.

Although it is not the focus of the present work, there is still room for further
investigation in our approach to hypothesis generation. For example, A, B, C
terms are concepts defined in the UMLS Metathesaurus, where each concept
is categorized under semantic hierarchies. Considering such hierarchies would
allow us to associate related concepts in the network and consequently yield
more hypotheses. The use of the thesaurus in hypothesis generation should be
studied in future work.

3.2 Reasonability of Hypothesis
The generated hypothesis becomes new knowledge only after verifying it

through actual experiments, which are often costly—or infeasible—to carry out.
Our purpose is to identify reasonable hypotheses that are more likely to lead to
new knowledge among automatically derived hypotheses. As described, we call
a binary relationship an event, and a hypothesis is a new event derived from
more than two events sharing a common entity. To measure the reasonability
of a hypothesis, we make an assumption that a reasonable hypothesis would be
generated from semantically similar events. This assumption is based on the
intuition that a hypothesis generated from dissimilar events has a semantic gap

Fig. 4 Fragment of the MeSH thesaurus.

that is difficult to interpret. A hypothesis generated from similar events, on the
other hand, would be more logical or more easily to understand, resulting in more
reasonable hypotheses.

Now, the question is how to measure the similarity of events to quantify the
reasonability of a hypothesis. For this purpose, we take advantage of MeSH
terms. MeSH terms are assigned to MEDLINE records to characterize each
article. Each MEDLINE record is assigned by hand approximately ten MeSH
terms on average. The 2010 version of MeSH contains a total of 25,588 subject
headings, also known as descriptors. MeSH descriptors are arranged in both an
alphabetic and a hierarchical structure. The terms at the most general level
of the hierarchical structure are very broad headings. More specific headings
are found at narrower levels of the eleven-level hierarchy 27). MeSH terms can
be suitable features to represent an article due to high quality assignment by
experts. Figure 4 presents a fragment of the MeSH thesaurus.

Here, a potential problem regarding MeSH terms is that they characterize
not an event but (some parts of) an article with which they are assigned. As
described, however, we extract events only from the main part of an article,
namely, the article title, which hopefully MeSH terms well represent.

In the following, we first introduce concept similarity based on MeSH terms
and then extend it to event similarity.

3.3 Concept Similarity
There is a variety of semantic similarity measures defined on a thesaurus

like MeSH 28)–31) where each concept is categorized under semantic hierarchies.
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Among them, we adopt the measure proposed by Seco 31) because his measure
depends only on the structure of a thesaurus without term/concept frequencies.

Seco assumed that, in a given thesaurus, concepts with many hyponyms convey
less information than those with low hyponyms, and defined the similarity be-
tween two concepts according to the information value of their common ancestor,
which depends on its position in the thesaurus. If concepts are the most specific
in the thesaurus (i.e., leaf nodes), the information they provide is maximum.
Based on the assumption, the semantic similarity between two concepts, m1 and
m2, is expressed using Information Content (IC) defined as

sim(m1,m2) = max
m∈S(m1,m2)

IC(m) (1)

IC(m) = 1 − log(hypo(m) + 1)
log(Ns)

(2)

where IC(m) is the IC value of a MeSH term m, S(m1,m2) is a set of concepts
that subsumes both m1 and m2 in the thesaurus, hypo(m) is the number of
hyponyms of m, and Ns is the total number of concepts in the thesaurus. The
denominator in Eq. (2), which is equivalent to the value of the least informative
concept, serves as a normalizing factor to ensure that IC values are in the range
from 0 to 1. This formulation guarantees that IC decreases monotonically with
the generality of a concept. Moreover, IC of the imaginary top node of a thesaurus
becomes 0.

3.4 Event Similarity
This section extends the concept similarity defined in Eq. (1) to event similarity,

which we regard as the reasonability of a hypothesis. The relationship between
the hypothesis reasonability and the event similarity is illustrated in Fig. 5. The
reasonability of the hypothesis linking c1-c5 is the similarity between events c1-
c3 and c3-c5, which is higher than that of the hypothesis linking c1-c6 since the
similarity between events c1-c3 and c3-c5 is higher than that between events c1-c2

and c2-c6. The following describes two simple instantiations of event similarity
extended from the concept similarity.

3.4.1 Event Similarity by Concept Similarity Averaging
A straightforward extension from the concept similarity would be to take an

average of the similarities between all the combinations of the concepts repre-

Fig. 5 Relation between event similarity and hypothesis reasonability.

senting two events. This similarity, or the reasonability of a resulting hypothesis,
can be defined as

Ravg(ei, ej) =
1

|Mi||Mj |
∑

mk∈Mi

∑
ml∈Mj

sim(mk,ml) (3)

where Mi and Mj are sets of MeSH terms corresponding to events ei and ej ,
respectively. A set of MeSH terms M is formed by extracting MeSH terms from
the MEDLINE record in which an event is found. When the same event (co-
occurrence of two concepts) is found in multiple articles, the MeSH terms assigned
to those articles are aggregated into M. A shortcoming of this similarity Ravg

is that it considers the similarities even between dissimilar concepts as we will
discuss in Section 5.

3.4.2 Event Similarity by Nearest Concept Similarity Averaging
This definition of event similarity, Rmax, intends to deal with the problem of

Ravg briefly mentioned above by focusing only on the most similar concepts.
For every concept representing an event ei, we identify the most similar concept
representing another event ej and take the average of the similarities. Then, we
switch ei and ej and compute the average. Rmax is defined as the sum of the
averages to make it symmetric.

Rmax(ei, ej) =
1

|Mi|
∑

mk∈Mi

max
ml∈Mj

sim(mk,ml)
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+
1

|Mj |
∑

ml∈Mj

max
mk∈Mi

sim(mk,ml) (4)

3.4.3 Event Similarity by TFIDF
To compare with the above two semantic-based ranking functions, we also

introduce a frequency-based event similarity adopting the often-used TFIDF term
weighting scheme. This definition resembles the one proposed by Srinivasan 14).

As mentioned above, an event may be extracted from multiple articles, and
thus, it is associated with duplicated MeSH terms when those articles have the
same MeSH terms. We regard the number of duplicates of a MeSH term mj

for event ei as its term frequency (denoted as nij) and the number of articles
indexed with the MeSH term as its document frequency (denoted as nj). Then,
each event ei can be represented as a MeSH term vector weighted by TFIDF.
That is,

ei = (wi1, wi2, · · · , wiM ) (5)
where wij is the TFIDF value, defined as nij × log(N/nj) for MeSH term mj .
M denotes the total number of MeSH terms, and N denotes the total number
of documents. Using the MeSH vectors, the similarity between events ei and ej

can be computed by cosine similarity as shown in Eq. (6) as normally done in the
information retrieval literature.

Rtfidf(ei, ej) =
ei · ej

|ei||ej | (6)

3.4.4 Event Frequency
We define another event reasonability measure Rfreq based not on event simi-

larity but on event frequencies as follows:

Rfreq(ei, ej) =
√

freq(ei) × freq(ej) (7)

where freq(e) denotes the frequency of an event e. The intuition behind this is
that a hypothesis supported by highly frequent events should be reasonable. By
comparing Rfreq with other measures based on event similarity, we can contrast
the difference between frequency- and similarity-based measures.

4. Hypothesis Explorer

Based on the framework described in Section 3, we implemented a prototype
of a hypothesis discovery system, called Hypothesis Explorer, to allow us to ef-
ficiently find new hypotheses. Given a starting term (A term), and optionally
a terminal term (C term), Hypothesis Explorer visualizes a biomedical entity
network extracted from the biomedical literature and automatically discovers ex-
plicit associations (i.e., not directly linked entities) as hypotheses. It can also
provide supporting evidence (article titles) of events for review from which the
hypotheses were derived. Figure 6 presents an example of closed discovery when

Fig. 6 Screen shot of Hypothesis Explorer.
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“fish oil” and “raynaud” were used as A term and C term, respectively.
This system mainly consists of three regions, three text boxes, and one drop-

down menus. The top text boxes accept A term and a C term as user queries.
To run open discovery, we feed only A term and for closed discovery we feed both
A and C terms. In addition, the rightmost text box in the top can be used to
specify the maximum number of hypotheses displayed on the windows to avoid
a clutter as there are often a large number of hypotheses generated.

The top left region lists generated hypotheses composed of sets of A, B, and C
terms in the descending order of their semantic similarities shown in the rightmost
column. The bottom left region shows the source article titles from which a
hypothesis is generated. Remember that a hypothesis is made up of two events,
and each event is extracted from article titles as a co-occurrence of two concepts
(i.e., A and B terms or B and C terms). When a hypothesis is clicked in the top
left region, it is highlighted and the article titles containing the A-B and B-C
events for the hypothesis are displayed the bottom left region. This functionality
allows the users of the system to easily assess the validity of the events and
the hypothesis. The right big region visualizes the biomedical entity network
constructed from the literature, where generated hypotheses are displayed as red
dotted lines which connect A and C terms. On the other hand, the black solid
lines indicate explicit relationships or events which are part of the generated
hypotheses. The thickness of the black lines corresponds to the frequencies of
the respective events. The concept in blue font indicates the B term for the
hypothesis selected in the top left region.

Lastly, the dropdown menu above the top left region allows us to specify which
similarity measure we use to explore hypotheses. For the example in Fig. 6, Rmax

is selected as event similarity (i.e., reasonability).

5. Evaluation

5.1 Experimental Settings
We used the Swanson’s discovered hypothesis in 1986 that fish oil is effective for

the treatment of Raynaud’s disease, so as to evaluate our generated hypotheses.
In short, Raynaud’s disease is characterized by blood viscosity, platelet aggrega-
bility, and vascular reactivity, and fish oil is able to ease these symptoms. We

Biologic Function, Cell Function, Disease or Syndrome, Lipid, Molecular Function,
Organ or Tissue Function, Organism Function, Pathologic Function, Physiologic
Function

Fig. 7 UMLS semantic types.

examined if our semantic-based reasonability measures can make these associa-
tions prominent in comparison with other measures discussed in Section 3.4.

To be precise, we looked at the biomedical literature published between 1960
and 1985, and used their titles for constructing an entity network as described in
Section 3.1. Given fish oil as a starting concept, the hypotheses generated from
the network were ranked using the reasonability measures defined in Section 3.4.
If hypotheses with correct pathways (i.e., blood viscosity, platelet aggregation,
vascular reactivity, or the like) are ranked higher by the semantic similarity-
based reasonabilities than by the frequency-based reasonabilities, it suggests that
the former would be useful for identifying important hypotheses that may be
overlooked otherwise.

Figure 7 shows nine UMLS semantic types, which were also used by Weeber 15),
to restrict hypothesis exploration in the relationship extraction step. Addition-
ally, a UMLS concept, Blood Viscosity [Laboratory or Test Result], was substi-
tuted with Blood Viscosity [Physiologic Function] since the UMLS Semantic type
“Laboratory or Test Result” is not relevant for this experiment. As a result, we
obtained an entity network composed of 15,774 nodes and 193,165 edges.

5.2 Results and Discussion
Given fish oil as the A term, 13,677 hypotheses were found by searching the

entity network at the depth of two as an open discovery. Among them, there were
eight hypotheses whose C term was Raynaund’s disease or its synonyms. Table 1
shows these hypotheses represented by A, B, and C terms, sorted alphabetically
by their B terms. Note that “Primary Raynaud’s” and “Paroxysmal digital
cyanosis” are synonyms of Raynaud’s disease. In Table 1, “Blood Viscosity” is a
meaningful concept which legitimately connects fish oil to Raynaud’s disease as
mentioned above. In addition, since “Atheromatosis” and “Peripheral vascular
disease” are related to platelet aggregation and blood viscosity, the hypotheses
H1, H6, and H7 are reasonable, too. On the other hand, “Development” and
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Table 1 Generated hypotheses.

ID Reasonable A term B term C term
H1 Yes Fish Oil Atheromatosis Raynaud Disease
H2 Yes Fish Oil Blood Viscosity Paroxysmal digital cyanosis
H3 Yes Fish Oil Blood Viscosity Primary Raynaud’s
H4 Yes Fish Oil Blood Viscosity Raynaud Disease
H5 No Fish Oil Development Paroxysmal digital cyanosis
H6 Yes Fish Oil Peripheral vascular disease Paroxysmal digital cyanosis
H7 Yes Fish Oil Peripheral vascular disease Raynaud Disease
H8 No Fish Oil Suppression Paroxysmal digital cyanosis

Fig. 8 Rankings of reasonable hypotheses.

“Suppression” are too general to be useful in order to link fish oil and Raynaud’s
disease. Thus, the hypotheses H5 and H8 are not considered reasonable.

We ranked all the 13,677 hypotheses using the reasonability measures described
in Section 3.4. Figures 8 and 9 plot their rankings (shown in proportion to
the total number of hypotheses) of the reasonable and unreasonable hypotheses,
respectively.

For the former, the higher the hypotheses are ranked (i.e., having smaller val-
ues), the better the reasonability measures are. For the latter, conversely, good
reasonability measures should rank the hypotheses lower (i.e., having larger val-
ues). The rightmost points in Fig. 8 and Fig. 9 are the respective average rankings

Fig. 9 Rankings of unreasonable hypotheses.

obtained by different reasonability measures. To remind, Ravg is the reasonabil-
ity measure defined as the average of the similarities for all combinations of the
concepts representing two events, and Rmax is the average of the most similar
concepts. Rtfidf is the cosine similarity of the concepts weighted by TFIDF. Rfreq

is the geometric mean of the two event frequencies.
We first discuss the overall rankings of reasonable and unreasonable hypotheses.

As mentioned, the rankings of the reasonable hypotheses in Fig. 8 are considered
better when they have smaller values. On average, Rmax performed the best
followed by Rtfidf , Ravg, and Rfreq. For the average rankings of the unreasonable
hypotheses, Fig. 9 shows that Ravg was able to rank them lower (i.e., higher val-
ues) than the other reasonability measures. Rmax and Rtfidf worked comparably.

Next, we discuss the results for individual hypotheses. The hypotheses concern-
ing Blood Viscosity (i.e., H2, H3, and H4) are judged reasonable as mentioned,
and semantic-based reasonability measures, Rmax and Ravg were generally able to
rank them higher than the frequency-based Rfreq. This is because the frequencies
of the events between fish oil and blood viscosity and between blood viscosity
and Raynaud’s disease were very small; only one and four, respectively. Note
that, however, another frequency-based measure Rtfidf also worked well for these
hypotheses in spite of the low frequencies thanks to the IDF factor which boosts
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infrequent concepts.
For the remaining reasonable hypotheses, H1, H6, and H7, they were generally

ranked lower (having larger values) than the other reasonable hypotheses H2, H3,
and H4. This is mainly due to the insufficient number of MeSH terms associated
with the events from which the hypotheses were derived. Note that Rmax worked
relatively well even for these difficult hypotheses.

For the unreasonable hypothesis H5, Ravg and Rmax were able to rank it lower
(having larger values), followed by Rtfidf . Rfreq, on the other hand, performed
noticeably worse primarily because their B terms were quite general and highly
frequent concepts, resulting in spuriously high similarity values by Rfreq. As
for H8, it was found that Rmax did not work well as compared to the other
reasonabilities. We will discuss the property of Rmax in comparison with Ravg

shortly.
Looking at two semantic-based reasonability measures, Rmax and Ravg, the

former works better than the latter except for a couple of instances, including
H8. This observation suggests that Rmax, which disregards dissimilar concept
pairs, is preferred over Ravg. We present an illustrative example to show why
this is the case.

Suppose that there are two events, ea and eb, each represented by a set of
concepts, {Blood Viscosity, Fish Oil} and {Blood Viscosity, Platelet Aggrega-
tion}, respectively. According to Eq. (1), concept similarities of all combinations
of the concepts between the two sets are calculated as follows: sim(Blood Vis-
cosity, Blood Viscosity)=1 (since the term Blood Viscosity has no hyponyms),
sim(Blood Viscosity, Platelet Aggregation)=0.64, sim(Fish Oil, Blood Viscos-
ity)=0, and sim(Fish Oil, Platelet Aggregation)=0. In this case, Rmax and Ravg,
of the hypotheses derived from ea and eb become (1 + 0)/2 + (1 + 0.64)/2 = 1.32
and (1 + 0.64 + 0 + 0)/2 · 2 = 0.41, respectively. Further suppose that two
events e′a and e′b are defined by adding a concept “Vascular Disease” to ea

and “Raynaud Disease” to eb, respectively. Because these concepts are se-
mantically similar, the event similarity of e′a and e′b should not decline much
from that of ea and eb. The concept similarities involving either “Vascular
Disease” or “Raynaud Disease” are all zero except for sim(Raynaud Disease,
Vascular Diseases)=0.47. Then, the event similarities between e′a and e′b are

Acquired Abnormality; Amino Acid, Peptide, or Protein; Anatomical Abnormal-
ity; Antibiotic; Biologically Active Substance; Biomedical or Dental Material; Body
Substance; Carbohydrate; Cell Function; Congenital Abnormality; Disease or Syn-
drome; Eicosanoid; Element, Ion, or Isotope; Enzyme; Finding; Food; Hazardous
or Poisonous Substance; Health Care Related Organization; Hormone; Immunologic
Factor; Indicator, Reagent, or Diagnostic Aid; Injury or Poisoning; Inorganic Chem-
ical; Intellectual Product; Invertebrate; Laboratory Procedure; Lipid; Manufactured
Object; Molecular Function; Neuroreactive Substance or Biogenic Amine; Organ or
Tissue Function; Organic Chemical; Organism Function; Organophosphorus Com-
pound; Pathologic Function; Pharmacologic Substance; Physiologic Function; Sign
or Symptom; Steroid; Vitamin

Fig. 10 UMLS semantic types used for migraine and magnesium.

calculated as Rmax = (1 + 0 + 0.47)/3 + (1 + 0.64 + 0.47)/3 � 1.19 and
Ravg = (1+0.64+0+0+0+0+0+0+0.47)/(3 ·3) � 0.234. While Ravg dropped
to around the half of that between ea and eb, Rmax decreased only slightly. The
undesired behavior of Ravg is caused by many zero similarities between dissimilar
concepts. On the contrary, Rmax focuses only on similar concepts and is free from
such problems.

5.3 Additional Experiment
We carried out another experiment using a known relation between migraine

and magnesium—another hypothesis Swanson discovered 9), so as to examine how
our proposed semantic-based reasonability measure works for a different “true”
hypothesis.

Similar to the former experiment, we first constructed a biomedical entity net-
work from the literature published between 1966 and 1987 (since the relation
was discovered in 1988). As a result, we obtained an entity network composed of
29,915 nodes and 260,562 edges after filtering by UMLS semantic types similar
to those used by Weeber 15) as shown in Fig. 10.

Given migraine as the A term, 69,972 hypotheses were obtained, of which there
were 90 hypotheses whose C terms were magnesium or magnesium deficiency. We
again ranked all the 69,972 hypotheses using the reasonability measures from Sec-
tion 3.4. Because there are many hypotheses generated for this experiment, we
only present the average rankings (in proportion to the total number of hypothe-
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Table 2 Average rankings in proportion (%) for the case of migraine and magnesium.

Rmax Ravg Rtfidf Rfreq

Reasonable 36.6 47.6 36.3 22.6
Unreasonable 53.4 54.1 42.0 45.9

ses) for reasonable and unreasonable hypotheses in Table 2. Overall, the results
are similar to the previous results regarding Raynaud’s disease except that Rfreq

performed the best for reasonable hypotheses, followed by Rmax and Rtfidf . The
good performance of Rfreq is due to the fact that the frequencies of the events
that yielded the reasonable hypotheses were large enough to rank them high by
Rfreq. For unreasonable hypotheses, however, Rmax and Ravg worked the best,
ranking those hypotheses lower than the other measures.

In summary, the frequency-based measure Rfreq could properly rank reasonable
hypotheses only if the event frequencies concerning the hypotheses are sufficient,
although it generally gives inappropriately high rankings to the hypotheses with
general B terms. On the other hand, the semantic-based measure produces
relatively stable and proper rankings for both reasonable and unreasonable hy-
potheses irrespective of event frequencies.

6. Conclusion and Future Work

In this work, we aimed to identify reasonable hypotheses, especially those de-
rived from infrequent terms or events—by focusing on the reasonability of the
hypotheses. As the first step toward this goal, we assumed that similar events
produced a reasonable hypothesis and defined simple event similarities as an
extension of concept similarity using the MeSH thesaurus. We developed a pro-
totype hypothesis discovery system, Hypothesis Explorer, implementing our pro-
posed framework that supports hypothesis discovery through automatic hypoth-
esis generation and ranking and biomedical concept network visualization for a
given starting concept (and a terminal concept). Using the true hypotheses re-
ported in the hypotheses discovery literature, we conducted comparative experi-
ments, where our semantic-based reasonability measures, Rmax and Ravg, as well
as two frequency-based measures were examined whether they could properly
rank reasonable and unreasonable hypotheses. The results showed that Rmax

produced stable and appropriate rankings for most cases disregarding the fre-
quencies of the events from which hypotheses were generated. On the other
hand, frequency-based measures were by definition directly much influenced by
concept/event frequencies and shown not reliable for some cases.

For future work, we will consider the relevance of MeSH terms for their respec-
tive events. Currently, we indiscriminately use all the MeSH terms assigned to
the articles from which an event is extracted for representing the event. It is not
likely that those MeSH terms are all relevant to the event and need to be distin-
guished according to their relevance. Another issue is the coverage of hypothesis
discovery. Our analysis is limited to article titles and also does not consider se-
mantic hierarchy of concepts in hypothesis generation. To deal with it, we plan
to exploit UMLS Metathesaurus and WordNet in addition to MeSH, and will try
to extract biomedical relationships from not only titles but also abstracts which
have more complete information available for hypotheses generation. Lastly, we
would like to collaborate with biomedical experts to validate unknown hypotheses
generated from our proposed framework in direct comparison with the others.
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