2010 International Conference on Pattern Recognition

Unsupervised Learning of Stroke Tagger
for Online Kanji Handwriting Recognition

Mathieu Blondel
Graduate School of System Informatics
Kobe University
Kobe, Japan
mblondel @ai.cs.kobe-u.ac.jp

Kazuhiro Seki
Organization of Advanced
Science and Technology
Kobe University
Kobe, Japan

Kuniaki Uehara
Graduate School of System Informatics
Kobe University
Kobe, Japan
uehara@kobe-u.ac.jp

seki@cs.kobe-u.ac.jp

Abstract—Traditionally, HMM-based approaches to online
Kanji handwriting recognition have relied on a hand-made
dictionary, mapping characters to primitives such as strokes or
substrokes. We present an unsupervised way to learn a stroke
tagger from data, which we eventually use to automatically
generate such a dictionary. In addition to not requiring a
prior hand-made dictionary, our approach can improve the
recognition accuracy by exploiting unlabeled data when the
amount of labeled data is limited.

Keywords-kanji; handwriting recognition; HMM; clustering;

I. INTRODUCTION

With the growing popularity of touchscreen-equipped de-
vices such as smartphones and tablet-PC, online handwriting
recognition of Kanji (characters of Chinese origin used in
Japanese) is finding wide adoption as an input method and
in applications including electronic dictionaries, games and
educational software. Unlike characters of western writing
systems, Kanji include thousands of classes and are written
with a large number of strokes. For example, the Japanese
Industrial Standard (JIS) X 0208 defines code points for
6879 characters and these characters may contain up to 34
strokes. Moreover, although Kanji have a standard, correct
way of being written, in practice, users are likely to use dif-
ferent stroke orders or numbers. A good Kanji handwriting
recognition system must therefore be specifically designed
to have good runtime speed and be robust to stroke order
and number variations.

Hidden Markov Models (HMMs) are popular stochastic
models especially known for their application in temporal
pattern recognition. Most recent applications of HMMs to
online Kanji handwriting recognition have used HMMs to
represent primitives such as strokes [1] or substrokes [2],
rather than entire characters. This is because the number
of such primitives is much reduced compared to entire
characters and therefore, the recognition speed can be greatly
improved by employing efficient network search. Further-
more, since primitives are shared among different characters,

1051-4651/10 $26.00 © 2010 IEEE
DOI 10.1109/ICPR.2010.486

1973

fewer character training samples are needed to converge to
the optimal accuracy allowed by the system.

However, unlike entire characters, primitives are usually
not labeled in handwriting databases, since labeling each
single primitive would be too expensive. Their partitioning
is thus necessary, one way or another. For that purpose, pre-
vious supervised approaches have usually relied on a hand-
made dictionary, mapping characters to their primitives,
sometimes with additional spatial structure information [3].
For characters written in free stroke order and number,
however, matching primitives to their labels in the dictionary
amounts to a pattern recognition problem, which is the
problem that we are ultimately trying to solve by training
HMMs. Thus, in order to match primitives unambiguously
to their labels, only characters written in the correct stroke
order and number can be used. A human must therefore carry
out the time-consuming and error-prone task of preparing the
training data by removing incorrectly written characters.

In [4], a pre-existing hand-made dictionary is used to learn
substroke HMMs, which are subsequently used to automat-
ically augment the dictionary with additional stroke order
rules. The learned new dictionary can be used for stroke
order free recognition. On the other hand, HMM approaches
based on cube-search like [S] do not require a dictionary
for stroke-order free character recognition, as the different
stroke orders are handled efficiently directly in the search
procedure. However, these methods have traditionally relied
on a hand-made dictionary for the supervised training of
stroke HMMs. Finally, in [6], a two-stage stroke clustering
scheme is proposed, although not in a probabilistic frame-
work. The purpose is to identify prototypes for template-
matching based recognition, that is robust to allographs.

In this paper, we present an approach where no prior
hand-made dictionary is needed; the dictionary is entirely
learned from data. Stroke HMMs are trained in an unsuper-
vised fashion and the training data need not be manually
checked. Because character labels are only necessary for
the dictionary generation, this approach can also naturally
exploit unlabeled data when labeled data are limited.

IEEE
computer
® psouety

strokes

off-strokes

ICI

Figure 1. Stroke tagger A

II. STROKE TAGGER

The approach presented in this paper revolves around what
we name a stroke tagger, by analogy with part-of-speech
(POS) taggers. As its name indicates, the stroke tagger
can be used to annotate characters with their corresponding
stroke tag sequence. More precisely, we make the distinction
between two kinds of pen movements. A stroke is defined
as the pen movements from a pen-down to the next pen-
up. An off-stroke is defined as the movement in the air
between a pen-up and a pen-down. Formally, a character Xj,
composed of M strokes S also includes M —1 off-strokes v,
ie., Xy = S1,v1,59,va, ..., var—1,Sy. The tagger can be
used to find the most likely sequence Wy, = wi, ..., wy of
stroke and off-stroke tags corresponding to Xg. If the tagger
does not make any mistake, N typically equals 2M — 1.
For example, the character “¥-’ may be mapped to the tags
“= (| . =7 (three strokes and two off-strokes).

The stroke tagger, that we name A and is illustrated in
Figure 1, is a composite HMM, constructed by linking stroke
HMMs to off-stroke HMMSs, and vice versa. As HMMs are
first-order Markov processes, stroke states depend only on
the previous off-stroke states, and vice-versa. We therefore
more specifically call A a bigram stroke tagger. A higher-
level, generative way of seeing this single, big HMM is as
the model by which all Kanji are generated, and whose states
are in turn HMMs. These lower-level HMMs have a tag and
emit a stroke or off-stroke. It should be noted that, for clarity,
we added actual names to tags. However, in reality, tags are
identified by their cluster identifier, which is an integer.

The specificity of the proposed approach is that the
tagger is learned in an unsupervised fashion. In particular,
we require neither stroke labels in the database nor prior
hand-made dictionary. Formally, let D; = {(X;,y;)} and
D, = {X,} be sets of labeled and unlabeled characters,
respectively. A is trained using D; U D,,, as described in
the following sections. In order to initialize the HMMs that
compose A, we first tackle stroke and off-stroke clustering
separately.

A. Stroke clustering

In this research, strokes are variable-length sequences of
observations (feature vectors). Their clustering into clusters

1974

C = {C;} is thus a multivariate time-series clustering prob-
lem. We define the distance measure between two strokes

S = si1,...,85) and R = ri1,...,rg as dist(S,R) =
D(|S],|R]).
D(i,7) = d(si,rj) + min{D(i — 1, j),
D(i—1,j- 1),
D(i,j—1)}

D, which is symmetric, is the cumulated distance along
the best alignment path up to s; and r;, computed by
Dynamic Time Warping (DTW), a dynamic programming
(DP) algorithm. d(a,b) is the local distance between the
vectors a and b. For d, we prefer the Mahalanobis distance
to the Euclidean distance because the components of the
feature vectors have different scales.

We first compute the pairwise distance matrix between
pairs of stroke samples. From the distance matrix, we then
perform agglomerative, bottom-up clustering. Pairs of clus-
ters are merged together using the group-average criterion
until |C] clusters are formed.

In this research, connected strokes are handled by the
character decoder (see below). To this respect, although
the stroke clustering can cope with characters written in
free stroke order, characters written in free stroke number,
i.e. characters containing connected strokes, are likely to
perturb the clustering process, either by warranting distinct
clusters or by becoming outliers of existing clusters. To work
around this problem, we temporarily automatically remove
characters for which the stroke number is not standard,
from the training data. Obviously, this can only be done
for labeled characters, therefore the stroke clustering is
effectively performed on a subset D; C D;.

For each cluster, we can now train a corresponding HMM
by using the strokes assigned to that cluster. We initialize
left-right HMMs by aligning observations to states uniformly
and retrain them with the Baum-Welch (BW) algorithm.
Rather than using a fixed number of states for each HMM,
we found it beneficial to use the following simple technique
to estimate the HMM state numbers from data.

statenum(C;) = [A ZC:lvgvar(C’z)O |
avgvar(C;
c;eC
[S|—1
Z Z d(s¢,Se+1)
Sec; t=1
avgvar(C;) = i
> (s1-1)
Sec;

A is an empirically set value which can be interpreted as
the number of states that we want for a stroke of average
variation over time. The number of stroke clusters |C| has a
direct impact on the optimal number of states: a small value
of |C| will typically require a large number of states per

HMM and vice-versa. Our simple technique can therefore
accommodate the number of states of each HMM, for any
value of |C|.

Each HMM also includes an additional non-emitting exit
state, which when reached, notifies the Viterbi decoder to
jump to an off-stroke. This allows the decoder to handle
connected strokes.

B. Off-stroke clustering

Off-strokes are single vectors that denote the displacement
between two strokes. Their clustering into clusters V' = {V;}
is thus a much simpler task. Off-strokes are modeled with
|V| one-state HMMs. These single states have 1.0 next-
transition probability to ensure that no more than one time
unit is spent in them. To learn their emission probability
density function, we first initialize |V/| single-mixture mul-
tivariate gaussians randomly, then we let the Expectation-
Maximization (EM) algorithm iteratively update them.

C. lIterative retraining

Our stroke tagger A can now be constructed by linking
stroke HMMs to off-stroke HMMs, and vice versa. Similarly
to [7], where it has been proposed in the discrete domain,
we regard the DTW-based hierarchical clustering as an
imperfect yet better than random initial guess, with which
we bootstrap our HMMs. In this section, we describe an EM-
like method to iteratively refine the quality of the HMMs.
Unlike the initialization, it can handle connected strokes.

We set initial stroke to off-stroke and off-stroke to stroke
transition probabilities to 1/|V| and 1/|C|, respectively.
Strokes (respectively off-strokes) can not reach other strokes
(respectively off-strokes) directly. Let O = o01,...,07 be
the observation sequence of a character Xj. Stroke and off-
stroke boundaries in O are discarded, therefore O can be
seen as a single long stroke. An iteration of our retraining
procedure has two steps. First, in the E-like step, for all
Xx € Dy U D,, we find the most likely corresponding
tag sequence (Qx argmaxy, P(O, W|X). Q* can be
efficiently computed by an alternative formulation of the
Viterbi algorithm called the token passing or Viterbi search
algorithm, in which tokens retain the optimal tag sequence
while traversing A. This step provides us with an alignment
between observations and tags. Second, in the M-like step,
we use the previously computed observation-tag alignments
to update tag transition probabilities and to retrain stroke
and off-stroke HMMs with BW. The retraining procedure
stops when no more progress is made.

D. Dictionary generation and decoding

Once it is trained, A can be used to annotate new, previ-
ously unseen characters with their corresponding most likely
tag sequence. For the purpose of automatically generating
the dictionary that we need for recognizing new characters,
however, we can use the stroke tagger to annotate characters

1975

in D;. For each (X;,y;) € Dy, a dictionary entry is defined
as the mapping between the character label y; and the tag
sequence @* corresponding to X;. Importantly, since Q*
is also needed for each X; € D; during the retraining
procedure, we need not recompute it and can simply use
the one computed in the last iteration of the retraining.

The dictionary may contain several entries per character
to support various stroke orders. However, unlikely stroke-
orders are pruned out so the dictionary size does not exceed
an empirically set size. Contrary to a hand-made dictionary,
the automatically generated dictionary is not human-readable
since stroke tags correspond to cluster identifiers. This can
optionally be addressed by finding one representative per
cluster and asking a human to give a name to it.

The system decodes a new feature vector sequence O to
a character W which gives maximum likelihood among all
dictionary entries W.

Wk = argmaxy, P(W|0)
= argmaxy, P(O|W)P(W)/P(O)
~ argmaxy; P(O, QW)

The second line uses the well-known Bayes’ rule. P(O)
can be safely removed since the maximization is done
with respect to W. P(W) is also removed because we
consider all W to be equiprobable. Replacing P(O|W) by
P(O,Q|W) comes from the fact that we restrict to the
likelihood along the best path Q = ¢1, . . ., ¢, which allows
to use Viterbi search. For fast and efficient search during
character recognition, the flat dictionary should be converted
to a tree or Directed Acyclic Graph (DAG). Pruning can
optionally be used during the search by applying a beam
width.

III. EXPERIMENTS

To assert the performance of the proposed approach, we
performed open evaluation on the public database “HANDS-
kuchibue_d-97-06-10" [8] (hereafter Kuchibue). We used
70% as training data and 30% as test data, for a total
of respectively 39,424 and 16,896 characters, from 2965
classes (JIS 1), written in free stroke order. In addition, we
used KanjiVG [9], a project under creative commons license
including 6400 Kanji templates and a description of their
component and stroke structure. We used the Tegaki [10]
framework as a basis for our implementation.

Characters were linearly rescaled, resampled and con-
verted to feature vectors. Let (x, y;) be the pen-coordinates
at time t, (AiEt,Ayt) = (l’t — Tt—1,Yt — yt—l)v re =

(Azt)? + (Ayt)? and 0; = arctan (Ay:/Ax;). Thanks
to the off-stroke modeling, o; = (ry,6;) can be used
for feature vectors. In our experiments, however, we used
o; = (74,0, 24,y:), as we obtained better results, albeit
at the cost of a slower recognition speed. A and |V| were
empirically set to respectively 3 and 8. The dictionary size
was limited to 20,000 entries.

Table 1
ACCURACY COMPARISON

Dictionary 1-best | 5-best | 10-best
Hand-made 82.3 89.3 91.9
Cl =30 84.1 91.6 924
C| =40 85.4 91.9 92.1
C| =50 88.7 92.8 93.7

A. Hand-made vs. Generated

In this experiment, we investigated the benefits of a
generated dictionary over a hand-made dictionary in terms
of accuracy. For this purpose, we replaced the clustering of
Sections 2.A, 2.B and 2.C by a supervised learning based
on the stroke information from KanjiVG but we also carried
out the procedure described in Section 2.D so as to learn
additional stroke orders from data, very much like [4].

As shown in Table I, in our experiments, the proposed
approach performed favourably compared to the hand-made
dictionary approach. This may be explained by several
possible reasons. First, the stroke labels in KanjiVG are
not necessarily designed to optimize recognition accuracy.
In contrast, our clusters may be regarded as optimal, since
they are generated from data. Another possible reason is the
inevitable errors made during training data preparation (in-
correct characters must be removed). Our experiments also
show that larger values for |C| lead to better performance
without much degradation in the recognition speed, thanks to
the efficient search. However, we did not find the accuracy to
improve when |C| > 50. In comparison, KanjiVG includes
26 stroke classes.

Although the recognition speed of the proposed approach
and the hand-made dictionary approach are similar, the
training time of the proposed approach was found to require
roughly 5 times more time. This is due to the pairwise
distance matrix computation and the iterative retraining,
which are computationally expensive.

B. With vs. Without unlabeled data

In the previous experiment, we used exclusively labeled
data (i.e., D, = (). In this experiment, we reserved 10,000
characters that we treated as unlabeled for D,, and compared
the accuracy with and without unlabeled data for various
amounts of labeled characters D;. This time, in addition to
Kuchibue, we also used character templates from KanjiVG
to ensure that each character has at least one dictionary entry.

Figure 2 shows that the addition of unlabeled data tends to
help improve the system accuracy, especially when labeled
data are scarce. This is because D; is used to generate the
dictionary, while both D; and D,, are used to learn the stroke
tagger. This can be useful when labeled data are scarce while
unlabeled data (e.g., logs of past input characters) are also
available.

1976

1-best accuracy (%)

=—a 10,000 unlabeled characters
4+ + No unlabeled characters

Fb00 3000 4000 5000 6000 7000 8000 9000 10
Number of labeled characters

Figure 2. Effect of unlabeled data

IV. CONCLUSION

We presented a novel, unified framework, called stroke
tagger, for Kanji handwriting recognition, where no prior
hand-made dictionary was necessary. In addition to perform-
ing favourably compared to a supervised method based on
a hand-made dictionary, our approach allowed us to take
advantage of unlabeled data in the training. In the future, we
would like to extend our work to learn the spatial structure
of characters, in addition to stroke tag sequences.

REFERENCES

[1] Y. Katayama, S. Uchida, and H. Sakoe, “A new hmm for
on-line character recognition using pen-direction and pen-
coordinate features,” ICPR, pp. 1-4, 2008.

[2] M. Nakai, N. Akira, H. Shimodaira, and S. Sagayama,

“Substroke approach to hmm-based on-line kanji handwriting

recognition,” ICDAR, p. 491, 2001.

[3] J. Tokuno, Y. Yang, G. P. da Silva, A. Kitadai, and M. Nak-

agawa, “Pen-coordinate information modeling by scpr-based

hmm for on-line japanese handwriting recognition,” ICPR,

pp. 348-351, 2006.

[4] M. Nakai, H. Shimodaira, and S. Sagayama, “Generation of

hierarchical dictionary for stroke-order free kanji handwriting

recognition based on substroke hmm,” ICDAR, p. 514, 2003.

[5] Y. Katayama, S. Uchida, and H. Sakoe, “Stochastic model of

stroke order variation,” ICDAR, pp. 803-807, 2009.

[6] K. Yamasaki, “Automatic prototype stroke generation based

on stroke clustering for on-line handwritten japanese character

recognition,” ICDAR, p. 673, 1999.

[7] T. Oates, L. Firoiu, and P. R. Cohen, “Clustering time series

with hidden markov models and dynamic time warping,”

1JCAI-99 Workshop on Neural, Symbolic and Reinforcement

Learning Methods for Sequence Learning, pp. 17-21, 1999.

[8] M. Nakagawa and K. Matsumoto, “Collection of on-line

handwritten japanese character pattern databases and their

analyses,” I/JDAR, pp. 69-81, 2004.

(9]
[10]

“http://kanjivg.tagaini.net.”

“http://www.tegaki.org.”

