
1

A Hybrid Approach to Protein Name Identification in

Biomedical Texts

Kazuhiro Seki and Javed Mostafa

Laboratory for Applied Informatics Research, Indiana University

1320 East Tenth Street, LI 011, Bloomington, Indiana 47405, USA

Tel: 812-855-2849

Fax: 812-855-6166

Email: {kseki,jm}@indiana.edu

Acknowledgment
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Abstract

This paper presents a hybrid approach to identifying protein names in biomedical texts, which is

regarded as a crucial step for text mining. Our approach employs a set of simple heuristics for

initial detection of protein names and uses a probabilistic model for locating complete protein

names. In addition, a protein name dictionary is complementarily consulted. In contrast to

previously proposed methods, our proposed method avoids the use of natural language processing

tools such as part-of-speech taggers and syntactic parsers and solely relies on surface clues, so as

to reduce the processing overhead. Moreover, we propose a framework to automatically create a

large-scale corpus annotated with protein names, which can be then used for training our

probabilistic model. We implemented a protein name identification system, namedP, based

on our proposed method and evaluated it by comparing with a system developed by other

researchers on a common test set. The experiments showed that the automatically constructed

corpus is equally useful in training as compared with manually annotated corpora and that effective

performance can be achieved in identifying compound protein names withP.
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1 Introduction

Reflecting the ever-growing digitized publications, enormous efforts have been made for

automatically discovering novel information from texts, i.e., text mining. The popularity of text

mining techniques is reflected in the large number of publications on this topic found in established

forums such as ACM SIG on Knowledge Discovery in Data and Data Mining (KDD) (Zaki et al.,

2003) and IEEE International Conference on Data Mining (ICDM) (Cercone et al., 2001).

Text mining is crucial also in the field of cellular and molecular biology because of a strong
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demand for discovering molecular pathways, protein-protein interactions, and so on in the

literature, which are even for human experts, labor-intensive and time-consuming. Therefore,

much research has been conducted to explore text mining techniques on biomedical texts (Adamic

et al., 2002; Friedman et al., 2001; Fu et al., 2003; Hirschman et al., 2002; Ng & Wong, 1999;

Palakal et al., 2002; Proux et al., 1998; Sekimizu et al., 1998; Thomas et al., 2000).

Our ultimate goal is to realize an automated system to mine novel information from the

biomedical literature; specifically, we aim to develop a system to identify relations and interactions

between proteins and cancer, that are expected to facilitate the development of new drugs and

treatments peculiar to cancer. To accomplish our goal, we start with identifying protein names

appearing in biomedical texts. This task can be considered as named-entity recognition partly

explored in Message Understanding Conferences (MUCs) (Grishman & Sundheim, 1996), in

which proper nouns, such as names of people and companies, locations, and time expressions

appearing in newspaper articles were targeted for automatic recognition. The most successful

system achieved the F-score of 93.4% (Marsh & Perzanowski, 1998) and the task, in this particular

domain, could be seen as a solved problem.

However, identifying protein names is still an open question. This is partially because there

are no common standards or fixed nomenclatures for protein names that are followed in

practice (Bruijn & Martin, 2002). As new proteins continue to be discovered and named,

predefined protein name dictionaries are not necessarily helpful in identifying new protein names.

Additionally, protein names frequently appear in shortened, abbreviated, or slightly altered forms

(e.g., the use of capital and small letters and hyphens is often inconsistent). Therefore, even the

protein names that are already known and are to be included in a dictionary might be overlooked

due to the way they are actually written. Another challenging issue in identifying protein names is

to find their name boundaries. According to our preliminary research on 99 MEDLINE abstracts

(obtained atProteinhalt i textproject Web page (Franzén, 2003)), 42% of protein names are

composed of multiple tokens (i.e., compound names), and these tokens include symbols, common
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nouns, adjectives, adverbs, and even conjunctions, which makes it difficult to distinguish protein

names from the surrounding texts (Tanabe & Wilbur, 2002).

Motivated by the above background, we explore a method to identify protein names in

biomedical texts with an emphasis on finding compound names. As a final model, we propose a

hybrid method taking advantage of hand-crafted rules, probabilistic models, and a protein name

dictionary as a complementary means. In addition, we propose a framework to train probabilistic

models on an automatically constructed large-scale corpus, where manually annotated corpora are

no longer needed for training.

The rest of this paper is structured as follows: Section 2 summarizes past research related to

protein name identification. Section 3 explains our proposed approach in detail. In Section 4, the

methodology of evaluation is described and the result is presented and discussed. Lastly, Section 5

and Section 6 conclude this paper with our findings and future directions.

2 Related Work

There have been several attempts to develop techniques to identify protein names in biomedical

texts. They roughly fall into three approaches, that is, dictionary-based, heuristic rule-based, and

statistical.

An approach based exclusively on a dictionary is not necessarily helpful for identifying

protein names because new protein names continue to be created and there are often many

variations in the way identical proteins are referred to. To tackle this problem, Krauthammer et al.

(2001) proposed an approach to protein and gene name identification, using BLAST (Altschul et

al., 1997), a DNA and protein sequence comparison tool. Their basic idea involves performing

approximate string matching after converting both dictionary entries and input texts into nucleotide

sequence-like strings, which can be then compared by BLAST. For evaluation, they extracted gene

and protein names from GenBank (Benson et al., 2003) to create a name dictionary, converted
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them to nucleotide sequence-like strings according to a predefined conversion table, and applied

their method to a review article, which is manually annotated with 1,162 gene and protein names

by biology experts. They reported that 409 names out of 1,162 names (35.2%) were not contained

in the dictionary and, among them, 181 (44.3%) were fully or partially identified by their proposed

method.

Fukuda et al. (1998), Franzén et al. (2002), and

Narayanaswamy et al. (2003) proposed rule-based approaches. They exploited surface clues for

detecting protein name fragments (i.e., parts of protein names) and used a part-of-speech tagger

and/or a syntactic parser for finding protein name boundaries. Typically, the surface clues include

the following features, where bold characters indicate the corresponding examples.

• Capital letters (e.g.,ADA , CMS)

• Arabic numerals (e.g., ATF-2, CIN85)

• Roman alphabets (e.g., Fcalpha receptor, 17beta-estradiol dehydrogenase)

• Roman numerals (e.g., dipeptidylpeptidaseIV , factorXIII )

• Words appearing frequently in protein names (e.g., myelin basicprotein, PI 3-kinase,

nerve growthfactor)

Franźen et al. (2002) conducted experiments that compared their system (Yapex) with

Fukuda’s system (Kex) on 101 MEDLINE abstracts. Yapex achieved a recall of 61.0% and a

precision of 62.0% as compared to a recall of 37.5% and a precision of 34.3% on Kex in terms of

exact match. Incidentally, Narayanaswamy et al. (2003) reported to have achieved a recall of

69.1% and a precision of 96.9% on 55 MEDLINE abstracts, where the precision is much higher

than both Yapex and Kex. However, they cannot be directly compared since Narayanaswamy et al.

targeted both protein and gene names (where detected names are regarded as correct if they are

either gene or protein names), while Yapex and Kex focused specifically on protein names, and

their test data are different.

Statistical approach has made a considerable impact on natural language processing (NLP)
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research and related areas, such as part-of-speech (POS) tagging, parsing, and speech recognition.

In the bioinformatics domain, for example, Collier et al. (2000), Nobata et al. (1999), and Kazama

et al. (2002) applied statistical methods (e.g., hidden Markov models, decision trees, and support

vector machines) for detecting and classifying gene and gene product names including proteins.

The features used in their methods are mostly the same as those used in rule-based approaches, that

is, surface clues and parts of speech.

Comparing rule-based and statistical approaches, rule-based approaches have an advantage

in a sense that rules can be flexibly defined and extended as needed, but manually analyzing

targeted domain texts and crafting rules are often time-consuming. Statistical approaches are

relatively easy to apply if appropriate models and training data are given. However, creating

training data (i.e., corpora annotated with protein names in this case) requires domain experts and

is also time-consuming, and an insufficient amount of training data leads to the data sparseness

problem. In general, to achieve higher performance, more complex, elaborated models are

desirable, which usually require more training data in order to reasonably estimate the increasing

number of parameters.

Rule-based and statistical approaches are, of course, not necessarily exclusive. For instance,

Tanabe & Wilbur (2002) proposed a method for identifying gene (and protein names) using both

heuristic and statistic strategies. They introduced a new (pseudo) POS tag indicating gene names

and trained a rule-based POS tagger on a corpus manually annotated with gene names using the

new tag. They used the Brill tagger (Brill, 1994), which does error-driven learning to induce rules

for tagging parts of speech. After training on gene names, the tagger can be used for identifying

potential gene names as if they are one of parts of speech. The initial result is then filtered to

remove misdetected candidates and to identify overlooked names using manually created rules.

Lastly, a näıve Bayes classifier is applied to predict the likelihood that each input document does

contain gene names. Their experiments demonstrated that higher performance can be achieved for

gene/protein name identification on the documents with higher Bayesian scores.
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Although there have been much research on protein name identification as shown above,

there are no common data set or standard evaluation criteria by which different methods can be

fairly compared. To advance the techniques of protein name identification, it is important to have

common basis for comparing results as attempted in MUCs (Grishman & Sundheim, 1996). As for

data set, there are a few annotated corpora publicly available. One is the GENIA corpus (Ohta et

al., 2002), which consists of 2,000 MEDLINE abstracts (version 3.01) and has been annotated with

not only proteins but a subset of the substances and the biological locations involved in reactions of

proteins. Another corpus was made by theProteinhalt i text(protein concentration in text)

project (Franźen, 2003), which is composed of 200 MEDLINE abstracts and was manually

annotated with protein names. As for evaluation criteria, Olsson et al. (2002) proposed four criteria

to assess the performance of protein name identification, which are explained in Section 4 in more

detail.

It should be also noted that, in order to provide a common data set and evaluation criteria to

compare different approaches, there is an ongoing project, called BioCreAtIvE (Critical

Assessment of Information Extraction systems in Biology) (Hirschman & Blaschke, 2003). The

tasks of the project include gene/protein name identification, where each research group

independently develops their method to automatically identify gene/protein names, and their

results are to be evaluated on a common test set and evaluation criteria. A workshop reporting the

results will be held in Spring 2004.1

In this paper, we propose a hybrid approach utilizing heuristic rules for initial detection of

protein name fragments and a probabilistic model focusing on determining name boundaries. In

addition, a protein name dictionary is complementarily consulted. The rules used are simple and

easy to develop and the probabilistic model incorporates word classes based on suffixes and word

structure, so as to overcome the data sparseness problem. For evaluation, we use the data set

produced by theProteinhalt i textproject and their proposed evaluation criteria, which enables us

to directly compare our method with the previous work conducted by Franzén et al. (2002).
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3 Our Proposed Method

3.1 Overview

Figure 1 depicts the framework of our proposed method to be described in this section.

Insert Figure 1 about here

Before entering in protein name identification processes, an input text is first partitioned into

sentences and then tokenized, where tokens are defined as words and symbols. For instance,PI

3-kinase will be separated into four tokens, i.e.,PI, 3, -, andkinase. Then, we identify protein

names through three steps shown in Figure 1. Firstly, fragments of protein names are detected by a

set of heuristic rules relying on surface clues which are commonly used for protein name

identification. Secondly, because the detected fragments does not usually form complete protein

names, their name boundaries are expanded/determined based on either a set of rules or a

probabilistic model so as to locate complete protein name candidates. In the case where a

probabilistic model is used, a filter is then applied to the protein name candidates to rule out

unlikely candidates.2 Lastly, a protein name dictionary is consulted to detect the protein names

that are not recognized by the previous steps. Each step is explained in Section 3.2–3.4 in greater

details.

3.2 Protein Name Fragment Detection

To detect protein name fragments, we use several heuristic rules which were derived from previous

studies (Franźen et al., 2002; Fukuda et al., 1998; Narayanaswamy et al., 2003) and our

preliminary observation on 99 MEDLINE abstracts (Seki & Mostafa, 2003). These abstracts were

manually annotated with 1,745 protein names byProteinhalt i textproject (Franźen, 2003) and

were used as a reference corpus for developing the Yapex protein name tagger (see Section 2).
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Words satisfying any of the following conditions are detected as potential protein name

fragments.

• Words that include capital letter(s)

• Words that include combinations of Arabic numerals and lower case letters (e.g., p35,

cdk5)

• Words with suffixes that often appear in protein name fragments (–nogen, –ase, and–in

are considered in this study)

• Words that often appear as protein name fragments (factor(s)andreceptor(s)are

considered in this study)

• Roman alphabets that often appear as protein name fragments (alpha, beta, gamma, delta,

epsilon, andkappaare considered in this study)

These conditions unfortunately also detect words that are not protein name fragments. For

example, if we extract all words containing capital letters, words located in the beginning of

sentences will be inevitably extracted as protein name fragments. To decrease these errors, we

exclude the following.

• Words with a capital letter in the beginning followed by more than three lower case letters

(e.g., According, Basically)

• Words composed of only capital letters longer than six characters (e.g., KTPGKKKKGK)

• Only one character (e.g., A, B, C,· · ·)

• Measuring units:nM, mM, pH, andMHz (predefined based on the reference corpus)

• Chemical formulas:CaCl2, NH2, Ca2, HCl, andMg2 (predefined based on the reference

corpus)

• Words included in a stopword list. In this study, we used the PubMed Stopword List,3

which contains 133 function words

Henceforth we call the set of rules described above the “detection rules.”
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3.3 Protein Name Boundary Expansion

Since thedetection rulesdetect only protein name fragments in principle, the name boundaries of

the detected protein name fragments need to be expanded so as to identify complete protein names.

For this purpose, we explore the use of heuristic rules and a probabilistic model. The heuristics

were derived from our preliminary observation on the reference corpus (99 MEDLINE abstracts)

as used in Section 3.2.

Previous work (Franźen et al., 2002; Fukuda et al., 1998; Nobata et al., 1999) typically made

use of POS taggers and/or syntactic parsers for the purpose of determining protein name

boundaries, assuming that POS tags and/or noun phrases are good indicators for protein name

boundaries. However, according to our preliminary investigation on the reference corpus, protein

name fragments can be symbols, nouns, adjectives, adverbs, verbs, and conjunctions; thus, POS

tags may not be very informative for the purpose of detecting protein names and their name

boundaries. Therefore, our method, unlike previous work, avoids the use of those NLP tools,

which results in reducing both processing overhead and the potential number of probabilistic

parameters to estimate.

3.3.1 Heuristics

The words and symbols matching the conditions described below are regarded as parts of protein

names, and the protein name boundaries are expanded so as to include the matching words or

symbols.

The following are the conditions of rules that expand name boundaries rightward, where

italic characters denote the protein name fragments detected by thedetection rules, and the bold

characters denote the expanded parts.

• A hyphen (optional) plus a numeral or capital letters less than three characters (e.g.,ATF -

2)

• A capital letter in parentheses (e.g.,Ruk( I ) )
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The conditions of the rules that expand name boundaries leftward are shown below. Words shown

in parentheses as instances of frequent words/suffixes are the complete sets considered in these

rules.

• A numeral or capital letters less than three characters and optionally a hyphen (e.g.,N -

glycanase)

• In the case where the protein name fragment detected by thedetection ruleshas a suffix

“–in” (e.g. protein):

– frequent words (binding, related, associated) preceded by a hyphen plus any

words (e.g., parathyroidhormone - relatedprotein)

• In the case where the protein name fragment detected by thedetection ruleshas a suffix

“–ase” (e.g., kinase):

– frequent suffixes (–ine, –tide, –yl) optionally followed by a hyphen and

numerals (e.g.,tyrosine kinase)

– frequent suffixes (–one, –sitol) optionally followed by capital letters and a

hyphen (e.g.,glutathione S -transferase)

Finally, the following name fragments that were detected but not expanded by the above rules are

discarded, as they are unlikely to be protein names without any qualifiers.

• protein, –ase, receptor(s), factor(s), alpha, beta, gamma, delta, epsilon, kappa, I, II, III

Henceforth we call the set of rules described above the “expansion rules.”

3.3.2 Probabilistic Models

The creation of theexpansion rulesis a human process and it is based on close study of the

reference corpus. Hence, certain degree of arbitrariness cannot be avoided. We introduce an

alternative approach based on a probabilistic model to learn word collocation patterns without

human intervention. Below, we will explain the details of our model with an example context of



12

“...with dipeptidyl peptidase IV promoter constructs...”, where “dipeptidyl

peptidase IV” is the actual protein name and “peptidase” and “IV” are to be detected by the

detection rules.

First, we will look at the process to expand name boundaries leftward. Letwi denote one of

the protein name fragments detected in the previous initial detection step. Given a fragmentwi , the

probability that a tokenwi−1 immediately precedingwi is also a protein name fragment can be

expressed as a conditional probabilityPp(wi−1|wi), assuming a first-order Markov process.

Likewise, the probability thatwi−1 is not a protein name fragment can be expressed asPn(wi−1|wi).

For the above example,dipeptidyl andpeptidase correspond towi−1 andwi , respectively.

(Notice thatIV will not bewi sincepeptidase, the left side ofIV, is already known (detected) as

a protein name fragment.) Thus, we estimate the probabilitiesPp(dipeptidyl|peptidase) and

Pn(dipeptidyl|peptidase).

Based on these probability estimates, we decide whether to expand protein name

boundaries. In the case where there is no name boundary betweenwi−1 andwi (i.e.,wi−1 is also a

protein name fragment),Pp(wi−1|wi) is expected to be greater thanPn(wi−1|wi). Thus, we regard

wi−1 as a protein name fragment if the following condition holds:

Pp(wi−1|wi) > Pn(wi−1|wi) (1)

However, estimating these probabilistic parameters will require a large amount of training

texts annotated with protein names, which are expensive to create. To make matters worse, simply

using a large-scale corpus cannot be a substantial solution due to the characteristics of protein

names: new protein names continue to be created. Previously unseen data could be fatal for

probability estimation such as maximum likelihood estimation.

To remedy the data sparseness problem, we generalize words (tokens) to word classes.

Table 1 shows some examples. They are automatically and uniquely assigned to each word

according to the algorithm presented as a pseudo code in Figure 2.
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Insert Table 1 about here

Insert Figure 2 about here

The algorithm determines a unique word class for each word as follows. Given an input

wordw, it first checks whetherw is included in the predefined set of Roman alphabets, Roman

numerals, or punctuations; whether it is a number; or whether it contains one or more capital

letters. If so, its corresponding word class is assigned. If not, it then looks at the characters

composingw. In the case wherew is composed of alphabets, either“word” or one of“suffix”

classes is assigned, which is described in more detail next. Otherwise, class“symbol” is given.

For wordw, its suffix class (e.g.,suffix in andsuffix ase) is dynamically generated by

extracting a sequence of a vowel, one or more consonants (if any), and either a vowel or a

consonant from the ending ofw. However, class“word” will be assigned in cases where the suffix

was not extracted (i.e.,sw = NULL) or the resulting suffix is longer than the remainder of the word

in length. For example, given an input “peptidase”, it takes “a” as a vowel, “s” as one or more

consonants, and “e” as a vowel or a consonant, forming a suffix “ase”. For another example,

suppose “case” as input. In this case, again “ase” will be extracted as its suffix. However, because

the length of “ase” (=3) is longer than that of the remainder “c” (=1), the suffix will be rejected

and class“word” will be assigned.

Integrating the word classes to the probabilistic models, we formalize the bigram class

models as in Equation (2), whereci denotes the word class ofwi . The probabilities initially
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presented are now defined as a product of class-class and class-word transitional probabilities.

Pp(wi−1|wi) = Pp(wi−1|ci−1) · Pp(ci−1|ci)

Pn(wi−1|wi) = Pn(wi−1|ci−1) · Pn(ci−1|ci)
(2)

For our example, these are:

Pp(dipeptidyl| peptidase) = Pp(dipeptidyl| suffix yl) · Pp(suffix yl | suffix ase)

Pn(dipeptidyl| peptidase) = Pn(dipeptidyl| suffix yl) · Pn(suffix yl | suffix ase)
(3)

The probabilistic parameters can be estimated based on corpora annotated with protein

names. However, the models still contain raw wordswi−1, which may cause the data sparseness

problem. To cope with it, we make use of a smoothing method in estimating the transitional

probabilities. Preliminarily, we compared Good-Turing estimation (Good, 1953) and Witten-Bell

smoothing (Witten & Bell, 1991). Briefly, the former estimates the probabilities based on adjusted

word frequencies assuming that their distribution is binomial, and the latter estimates the

probabilities by considering how often a class in question has new words (which is assumed to be

the number of words associated with the class). For this study, we utilize the Witten-Bell

smoothing method, which found to perform better on the reference corpus. Equation (4) shows the

definition of Witten-Bell smoothing (for this particular model) to estimate a transitional probability

from classc to wordw:

PWB(w|c) =



F(w, c)
F(c) + T(c)

if F(w, c) > 0

T(c)
F(c) + T(c)

otherwise

(4)

whereF(x) denotes a frequency ofx, andT(c) denotes the number of word types which belong to

classc.

Likewise, we adopt the model described above to expand/determine protein name

boundaries rightward as well. The probability functions are formalized as in Equation (5), where

wi+1 andci+1 denote the token immediately following the detected protein name fragmentwi and
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its word class, respectively.

Pp(wi+1|wi) = Pp(wi+1|ci+1) · Pp(ci+1|ci)

Pn(wi+1|wi) = Pn(wi+1|ci+1) · Pn(ci+1|ci)
(5)

For each of the protein name fragments detected by the heuristic rules described in

Section 3.2, we compute the probabilities above to determine whether to expand their name

boundaries. When expanded, the probabilistic models are iteratively applied to the expanded

fragments to further expand name boundaries as long as the condition in Equation (1) holds. For

our example,

Pp(dipeptidyl| peptidase) = Pp(dipeptidyl| suffix yl) · Pp(suffix yl | suffix ase)

= 0.02912594× 0.05825189

= 0.00169664

Pn(dipeptidyl| peptidase) = Pn(dipeptidyl| suffix yl) · Pn(suffix yl | suffix ase)

= 0.00040621× 0

= 0

(6)

BecausePp > Pn for this word collocation, “dipeptidyl” is also regarded as a protein name

fragment. Then, the window will move one word leftward and the same procedure is applied so as

to determine whether to include the preceding word (i.e.,with) as a part of the protein name.

3.4 Filtering

Our ultimate goal is to automatically discover novel information associated with proteins and

cancer from the literature, where protein name identification is a fundamental factor whose

performance will strongly influence the following processes. Although high recall and high

precision are ideal, generally there is a trade-off between them. In this context, it is desirable if we

could arbitrarily choose which metric is (and how much it is) preferred in the output of protein

name identification (e.g., high recall with low precision, high precision with low recall, or
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balanced) depending on reliability of the information we are seeking. This can be done by

restricting the system output based on some certainty measure that indicates the extent to which the

detected protein names are likely to be actual protein names.

We are currently using certainty scoreC(·) defined as in Equation (7), wherew1 · · ·wn

denotes a sequence of tokens detected as a protein name, andF(wi) andFp(wi) denote a frequency

of wi in training data and a frequency ofwi which appears as a protein name fragment, respectively.

C(w1 · · ·wn) =
1
n

n∑

i=1

Pc(wi)

where Pc(wi) =



Fp(wi)

F(wi)
if F(wi) ≥ 3

Fp(ci)

F(ci)
otherwise

(7)

Pc(wi) is a probability that wordwi is a protein name fragment, andC(w1 · · ·wn) is an

average of all probabilities associated withw1 to wn. ProbabilityPc(wi) will take a greater value in

the case where a tokenwi is predominantly used as a protein name fragment in training data since

Fp(wi) approaches toF(wi). In the case where the frequency ofwi is small, instead we use the

frequency of its word class because low frequent data are statistically less reliable. We set the

cutoff to 3.

The word classes used in computing the certainty score are the same as those used in protein

name boundary expansion described in Figure 2 except for acronyms. As our preliminary

experiment showed that more specific word classes for acronyms produced slightly better results

on the reference corpus, we introduce new word classes (only for acronyms) as follows. First,

given an acronym, capital letters, small letters, and numbers are converted toA, a, and0,

respectively; and then, consecutive same characters are squeezed into one character; lastly, the last

character is stripped if it is0. For instance,HsMad1 will be first converted toAaAaa0, then

squeezed intoAaAa0, and0 at the end is eliminated, resulting in a word class “acronymAaAa”.

Table 2 shows some examples of acronym word classes and the words correspond to them.
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Insert Table 2 about here

3.5 A Protein Name Dictionary

In addition to the previous steps described so far, we take advantage of a protein name dictionary

compiled from the SWISS-PROT (Release 40.38) and TrEMBL (Release 22.6) protein databases

(O’Donovan et al., 2002) in order to detect the protein names which are not recognized by the

hand-crafted rules and/or a probabilistic model.

SWISS-PROT and TrEMBL contain 120,607 and 729,579 entries for proteins respectively

as of December 2002. Figure 3 shows a fragment of the SWISS-PROT protein database (TrEMBL

has the same format as SWISS-PROT).

Insert Figure 3 about here

We built a protein name dictionary by extracting protein names and their synonyms from the

protein name fields (DE in Figure 3). In the example in Figure 3, “14-3-3-like protein GF14

chi” is a protein name, and “General regulatory factor 1” is its synonym. However, since

the format of theDE field is sometimes inconsistent, it produces a number of incorrect protein

names, leading to erroneous detection of protein names. Therefore, we excluded unlikely protein

names which (a) begin with special characters (e.g., spaces, commas, and parentheses), (b) consist

of only numerals or less than two characters, or (c) end with a hyphen or apostrophe.

In addition, we excluded the protein names composed of less than three tokens (words and

symbols) since these protein names were found to harm the overall accuracy of identification.

Furthermore, we applied thedetection rulesandexpansion ruleson the initial set of protein names
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extracted from SWISS-PROT and TrEMBL, and those detected by the rules were discarded so as

to improve processing speed by decreasing the dictionary size.

As a result, 114,876 of protein names and their synonyms were included in the dictionary.

3.6 Automatic Construction of Annotated Corpora

We proposed probabilistic models for expanding protein name boundaries and filtering out

unlikely candidates, which require corpora annotated with protein names for training. However,

creating annotated corpora needs biological expertise and is, even for human experts,

time-consuming. Therefore, it is highly desirable to create a large-scale corpus in an automated

way. Here, the important point to note is that training data do not need to be exhaustively

annotated. That is, the total number of annotations is more important than coverage for training.

Taking this into account, we propose a framework to automatically construct a large-scale corpus

annotated with protein names.

The basic idea is that given a MEDLINE abstract we annotate protein names only if specific

proteins are already known to be described in the abstract. These associations between proteins

and MEDLINE abstracts can be easily extracted from a number of databases. In this study, we use

the Protein Information Resource Non-redundant REFerence protein database (PIR-NREF) (Wu et

al., 2002) containing 1,228,541 entries as of April 2003 (the release 1.21) due to its

comprehensiveness. Figure 4 shows a fragment of the PIR-NREF protein database.

Insert Figure 4 about here

The example in Figure 4 indicates that the article associated with PubMed ID10719003 is

related tomaturase-like protein. It does not ensure that the exact namematurase-like

protein appears in the corresponding MEDLINE abstract because there are many variations of

protein names. But if the protein name does appear in the text then we use the text as a source for
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annotation. We extracted all pairs of protein names and PubMed IDs from the PIR-NREF database

and annotated the protein names in cases where they appear in the corresponding MEDLINE

abstracts. Figure 5 illustrates the process of automatic annotation.

Insert Figure 5 about here

As a result, we obtained a corpus containing 32,328 MEDLINE abstracts annotated with

91,773 occurrences of protein names. The corpus will be used for training the probabilistic models

for protein name boundary expansion.

4 Evaluation

4.1 Overview

To evaluate the effectiveness of our method described above, we implemented a protein name

identification system, namedP, as illustrated in Figure 1 and conducted a series of

experiments, in which our system was compared with the Yapex protein name identification

system (Franźen et al., 2002; Olsson et al., 2002). There are three reasons this particular study was

selected for comparison; according to our survey, Yapex is one of the state-of-the-art protein name

identification systems based on hand-crafted rules; the system is publicly available through a CGI

program at theProteinhalt i text(protein concentration in text) project homepage (Franzén, 2003);

and the annotated corpora used for the development and evaluation of Yapex are also publicly

available.

The annotated corpora consist of a reference corpus and a test corpus, and they contain 99

and 101 MEDLINE abstracts, respectively. The reference corpus, which is annotated with 1,745

proteins, is used for training our probabilistic models for protein name boundary expansion and for

computing the certainty scores, and the test corpus, which is annotated with 1,966 protein names,
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is used for evaluation. Hereafter, we will call the reference corpus thetraining setand the test

corpus thetest set.

In the following experiments, we mainly compare four different models below for protein

name identification. Notice that the protein name fragment detection step is done by heuristic rules

in all cases (see Figure 1).

• rule: uses hand-crafted rules for protein name boundary expansion

• rule+dic: the same asrule, but also uses the protein name dictionary for identification

• prob: uses the probabilistic model for protein name boundary expansion and the filter

(based on the certainty scores)

• prob+dic: the same asprob, but also uses the protein name dictionary for identification

4.2 Evaluation Metrics

Precision, recall, and F-score are used as evaluation metrics. Precision is the number of protein

names a system correctly detected, divided by the total number of protein names detected by the

system. Recall is the number of protein names a system correctly detected, divided by the total

number of protein names contained in the input text. F-score combines these measures, recall and

precision, into a single score and is defined as in Equation (8).

F-score=
2× precision× recall

precision+ recall
(8)

For judgment of correctness, we follow Olsson et al. (2002) and use three criteria introduced

in Yapex’s evaluation: exact, partial, and fragment matches.4 As for exact match,everyfragment

composing a protein name has to be correctly detected to be judged as correct, whereas, for partial

match, a detected protein name is counted as correct in cases whereanyfragments composing the

protein name are correctly detected. For fragment match, the counting unit is a fragment; that is,

eachfragment composing a protein name is to be judged independently whether it is correctly

detected or not.
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For instance, suppose that a protein name “ribosomal protein L22” is detected as “ribosomal

protein L22,” where bold fonts indicate the detected fragments. In this case, it is not counted as an

exact match because “ribosomal” was not detected, whereas it is counted as a partial match

because at least one token composing the protein name were correctly detected. Lastly, it is

counted as two fragment matches because two fragments out of three were correctly detected.

4.3 Results and Discussion

4.3.1 Overall Performance

Table 3 shows the result of the comparative experiment. The figures in the column “Yapex” are

directly cited from theProteinhalt i textproject homepage (Franzén, 2003), andrule, rule+dic,

prob, andprob+dic denote our proposed methods. A threshold for the certainty score (see

Section 3.4) was set to 0.245 in this experiment, which was derived by applying two-fold

cross-validation to the training data so as to maximize F-score for exact match. To put it more

precisely, we divided the training data into two sets of textA andB in equal size, and usedA for

computing certainty scores forB and, in turn, usedB for computing certainty scores forA with

varying the threshold. Then we took an average of the thresholds which maximized F-score for

each set.

Insert Table 3 about here

Comparingrule andprob, the latter produced better results in most cases. Especially, there

is a marked increase in recall for fragment match from 66.5 to 75.6 (+12.0%), indicating thatprob

correctly expanded more protein name boundaries thanrule (with a slight decrease of precision

from 75.4 to 74.3 (−1.4%)). As a result, it led to higher precision in identifying exact protein

names from 56.0 to 60.1 (+6.8%).
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In cases where the protein name dictionary was consulted (i.e.,rule+dic andprob+dic), the

recall marginally improved by 0.8%–4.6% with the precision remaining steady irrespective ofrule

or probused for protein name boundary expansion. Since dictionary lookup was done simply by

exact match between dictionary entries and input in this study, more flexible string matching

techniques may yield higher recall. Those techniques, such as one proposed by Krauthammer et al.

(2001), should be explored in future work.

When compared to Yapex, our probabilistic methods,probandprob+dic, produced lower

precision irrespective of the criteria for judgment of correctness (2.0% to 8.4% decrease), while

they showed higher recall than Yapex (2.4% to 13.0% increase) except for fragment match by

prob. Consequently, their F-scores were found quite comparable to those of Yapex, despite the fact

that our methods do not rely on POS taggers or syntactic parsers as used in Yapex.

We evaluated our methods on several criteria, i.e., exact, partial, fragment matches and

recall, precision, and F-score. Which criterion is important depends on what purpose we use the

system for. Considering our ultimate goal, i.e., text mining for the cancer-protein relations, exact

match would be important for distinguishing numbers of protein names and for associating

extracted information with them. As for recall and precision, high recall will be preferable in the

case where comprehensive information is needed, while high precision will be preferable in the

case where reliable information is needed. We will show later that higher precision can be achieved

by restricting the system output based on the certainty score introduced in Section 3.4.

4.3.2 Performance for Compound Names

Since our proposed probabilistic model is focusing on name boundary expansion, it is expected to

be more effective particularly for compound protein names (those composed of multiple tokens).

To demonstrate the advantage, we evaluated Yapex and our method solely on compound protein

names. The test set used in this evaluation is the same as the one used above and contains 897

occurrences of compound protein names. Table 4 shows the result. Since Yapex’s performance for
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compound names are not separately reported, it was obtained by submitting the test set to the

Yapex demo page (Franzén, 2003) on March 27, 2003.

Insert Table 4 about here

In the case where only compound protein names are considered,probmostly outperformed

Yapex especially for exact match, indicating that it found protein name boundaries more accurately

and more exhaustively than Yapex. This result verifies the advantage of our probabilistic model for

finding compound protein names and their boundaries. Let us stress again that Yapex uses a

syntactic parser to find name boundaries, whereas our method solely relies on surface clues

without those NLP tools.

As for the rule-based method,rule, it results in poor performance in recall. This is due to the

simplicity of our rule set for protein name expansion, and thus it could be improved by adding

more comprehensive rules. However, Yapex’s results suggest that it might result in a decline of

precision unless carefully tuned; Yapex also adopts a rule-based method, showing higher recall but

lower precision thanrule.

The advantage of our method for compound names, at the same time, implies a disadvantage

of our method for single-word names, since overall Yapex and our system produce comparable

results (in terms of F-score). Table 5 provides the results regarding single-word names on the test

set, where evaluation criteria for matching (i.e., exact, partial, and fragment matches) are not

reported because there is no distinction among them for single-word names.

Insert Table 5 about here

Table 5 shows some decrease in F-score for our methods as compared with Yapex, but the

difference (−2.9% forprob) was found not as significant as that for compound names. This is
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mainly because the numbers of single-word and compound names are different in the test set, that

is, since there are more single-word names, they have more influence on the overall performance.

In order to filter out unlikely single-word protein name candidates, Yapex makes use of a

dictionary compiled from the SWISS-PROT database, which appears to contribute to improve the

precision for single-word names. As discussed in Section 2, however, such a dictionary could be

quickly obsolete as new protein names continue to be created. One possible solution is to

continually update the dictionary. Yoshida et al. (2000) proposed a framework to automatically

construct a protein name abbreviation dictionary from MEDLINE abstracts, which can be

integrated into our system with a pre-compiled dictionary so as to improve the performance for

single-word names.

4.3.3 Alternative Models

To deal with the data sparseness problem, we introduced a bigram class model for generalization,

which is an integration of class-class and class-word transitional probabilities. To validate the

effectiveness of the model, we compared it with two other alternatives: one without word classes

(less generalized) and one without words (more generalized). Equation (9) and Equation (10) show

the conditions of these models respectively for expanding name boundaries leftward. Notice that

Equation (9) is the same as Equation (1) (i.e., before introducing a bigram class model).

Pp(wi−1|wi) > Pn(wi−1|wi) (9)

Pp(ci−1|ci) > Pn(ci−1|ci) (10)

Table 6 shows the results of protein name identification using our proposed model (prob) and the

alternatives, in which “word” and “class” denote the word transition model defined as in

Equation (9) and the class transition model as in Equation (10), respectively.
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Insert Table 6 about here

In terms of partial match, there is less difference among these three models. This is expected

by the definition of partial match: “detected protein names are judged as correct if any token

composing them is correctly detected.” In other words, if any fragment of protein names is

correctly detected by hand-crafted rules in the initial detection phase (which is in common for all

models), it is regarded as correct. That is, name boundary expansion does not make much

difference in performance for partial match. For other evaluation criteria, our proposed model

outperformed the others, especially in exact match, indicating that our model is effectively

generalized by combining transitional probabilities for words and classes.

4.3.4 The Use of an Automatically Constructed Corpus

We trained our proposed probabilistic model on the automatically constructed large-scale corpus,

i.e., 32,328 MEDLINE articles annotated with 91,773 occurrences of protein names (see

Section 3.6). Table 7 presents the results for overall performance, where “manual” and “auto”

denote probabilistic models trained on manually annotated and automatically constructed corpora,

respectively. Note that the results ofmanualare the same as those ofprobshown in Table 3 and

Table 4.

Insert Table 7 about here

Overall, the probabilistic model trained on the automatically annotated corpus (auto)

achieved higher recall than the one based on manually annotated corpus (manual), indicating that

autofound more protein names thanmanual, whereas themanualachieved higher precision than
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auto, indicating thatautoalso produced false positives (i.e., detected as protein names but actually

not). Consequently,autofavorably compares withmanualin F-score, despite the fact thatauto

does not require human efforts to create annotated corpora.

The larger differences in the performance (recall and precision) for compound names are

accounted for the automatically annotated corpus used for trainingauto. That is, the larger data set

provided richer examples of protein names for training the name boundary expansion model

(which resulted in higher recall), while it also provided more false examples (which resulted in

lower precision). To improve the precision, more elaborate procedures need to be developed for

creating higher quality training data. Figure 6 shows some examples of the resulting false positives

(i.e., those protein names which were detected by our system but are not actually protein names

according to the test set).

Insert Figure 6 about here

4.3.5 Filtering Based on the Certainty Scores

Lastly, the effectiveness of the certainty score introduced in Section 3.4 was examined. The

certainty scores were computed using the training set (i.e., 99 MEDLINE abstracts). The system

used here isprob; that is, the probabilistic models were used for expanding protein name

boundaries. By varying a threshold for the certainty score, we drew a recall-precision curve in

terms of exact match (Figure 7).

Insert Figure 7 about here

The right most and lowest circle corresponds to the result without restriction (i.e., threshold

is 0). As threshold increased, precision gradually increased until recall fell to around 40%. Then
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precision sharply increased up to around 90% with recall decreasing. In sum, although high

precision was achieved, recall steeply dropped at the same time. To prevent recall from dipping,

other features need to be explored for the certainty measure. For instance, surrounding words

(contextual cues) may be effective.

Additionally, to investigate the validity of the filter onactualprotein names, we applied it to

326,489 protein names extracted from SWISS-PROT and TrEMBL databases. (Note that, unlike

the protein name dictionary construction procedure described in Section 3.5, short names and those

detected by thedetectionandexpansionrules were not excluded for this experiment.) Figure 8

gives the distribution of certainty scores computed for these protein names.

Insert Figure 8 about here

The distribution shows the peak between 0.25 and 0.30 and is positively skewed. According

to the distribution, on the one hand, 207,016 names (63.4%) will successfully go through the filter

in the case where the threshold is set to 0.245 (which was derived based on the training data and

used in our experiments). On the other hand, 36.6% of actual protein names will be falsely

discarded. We could recover those protein names by lowering the threshold, but it will also cause a

decrease in precision as demonstrated in Figure 7. Once again, more effective features need to be

investigated for the certainty measure.

5 Conclusions

In this paper, we presented a hybrid method for identifying protein names in biomedical texts with

an emphasis on protein name boundary expansion. Our method utilizes a set of simple heuristics

for initial detection of protein name fragments and takes advantage of a probabilistic model for

expanding and finding protein name boundaries. The heuristics exploit surface clues reflecting the
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characteristics of protein names, and the probabilistic model incorporates word classes for

generalization so as to remedy the data sparseness problem. In addition, to detect those protein

names which could not be identified by the rules and the probabilistic model, we complementarily

utilized a protein name dictionary compiled from existing protein databases.

Our method, in contrast to the previous efforts, does not rely on POS taggers and/or

syntactic parsers at all, since the information given by these NLP tools are not necessarily helpful

for the task of protein name identification. This reduces both processing overhead and the potential

number of probabilistic parameters to estimate. We implemented a protein name identification

system, calledP, based on our proposed method, and conducted comparative experiments to

verify its effectiveness. The results demonstrated thatP performed comparably to a

best-of-the-breed system named Yapex which incorporates a syntactic parser. Moreover, in the

case where only compound protein names were evaluated, our system outperformed Yapex in most

cases. Furthermore, we proposed a framework for automatically constructing a large-scale corpus

annotated with protein names for training a probabilistic model. Through an experiment, it was

shown that the model trained on the automatically generated corpus favorably compares with one

trained on the manually annotated corpus (in F-score). Lastly, we proposed a notion of certainty to

filter out unlikely protein name candidates for improving precision; it was demonstrated to be

effective to incrementally raise precision at the expense of recall.

6 Future Work

Future work would include a refinement of the certainty measure to prevent recall from rapidly

falling. One of possible extensions is to utilize the probability estimates computed for name

boundary expansion, so as to consider context (adjacent words) to some extent. In addition,

integrating a framework of automatically discovering protein name abbreviations (for example,

Yoshida et al., 2000) may improve the overall accuracy by filtering out unlikely single-word
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protein name candidates.
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Footnotes

1At the time of writing this paper on October 2003.

2The filter can also be applied in the case where rules are used for the name boundary

expansion step, but we consider the filter as a part of a probabilistic framework described later and

limit the use of the filter for an evaluation purpose.

3http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html

4Exact, partial, and fragment matches correspond tostrict, PNP, andsloppy, respectively,

proposed by Olsson et al. (2002).
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Table 1

Examples of word classes.

Class Examples

suffix in protein, oncoprotein, lactoferrin

suffix ase kinase, transferase, peptidase

word the, a, an

acronym CN, TrkA, USF

arabic num 2, 3, 18, 76

romannum I, II, III, IV

romanalpha alpha, beta, gamma

punctuation comma (,), period (.)

symbol ), (, %, +
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Table 2

Examples of acronym word classes and some acronyms associated with them (not necessarily

protein name fragments).

Acronym class Examples

acronym0A 90K, 3B, 32DC13

acronymA0a C1q, E3s

acronymAaAa HsMad1, HsRad52

acronymaA0A eIF4G
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Table 3

A comparison between Yapex and our proposed methods on the test set of 101 MEDLINE abstracts.

Numbers in parentheses indicate percentage increase/decrease relative to Yapex.

evaluation criteria Yapex rule rule+dic prob prob+dic

recall 59.9 65.0 (+8.5%) 66.1 (+10.4%) 66.9 (+11.7%) 67.7 (+13.0%)

exact precision 62.0 56.0 (−9.7%) 56.3 (−9.2%) 60.1 (−3.1%) 60.2 (−2.9%)

F-score 61.0 60.1 (−1.5%) 60.8 (−0.3%) 63.3 (+3.8%) 63.7 (+4.4%)

recall 81.4 86.0 (+5.7%) 86.9 (+6.8%) 86.0 (+5.7%) 86.7 (+6.5%)

partial precision 84.3 74.0 (−12.2%) 74.1 (−12.1%) 77.2 (−8.4%) 77.2 (−8.4%)

F-score 82.8 79.6 (−3.9%) 80.0 (−3.4%) 81.4 (−1.7%) 81.6 (−1.4%)

recall 76.2 66.5 (−12.7%) 69.7 (−8.5%) 75.6 (−0.8%) 78.0 (+2.4%)

fragment precision 75.8 75.4 (−0.5%) 75.4 (−0.5%) 74.3 (−2.0%) 74.1 (−2.2%)

F-score 76.0 70.7 (−7.0%) 72.5 (−4.6%) 75.0 (−1.3%) 76.0 (0%)
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Table 4

A comparison between Yapex and our methods for compound protein names on the test set. Numbers

in parentheses indicate percentage increase/decrease relative to Yapex.

evaluation criteria Yapex rule prob

recall 53.2 46.8 (−12.0%) 61.0 (+14.7%)

exact precision 49.7 55.0 (+10.7%) 57.6 (+15.9%)

F-score 51.4 50.6 (−1.6%) 59.3 (+15.3%)

recall 73.3 63.4 (−13.5%) 78.6 (+7.2%)

partial precision 68.5 74.6 (+8.9%) 74.3 (+8.4%)

F-score 70.8 68.6 (−3.1%) 76.4 (+7.9%)

recall 65.8 53.0 (−19.5%) 69.8 (+6.1%)

fragment precision 65.1 75.0 (+15.2%) 66.4 (+2.0%)

F-score 65.4 62.1 (−5.0%) 68.0 (+4.0%)
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Table 5

A comparison between Yapex and our methods for single-word protein names on the test set

(containing 1,069 single-word protein name occurrences). Numbers in parentheses indicate

percentage increase/decrease relative to Yapex.

evaluation criteria Yapex rule prob

recall 66.2 80.3 (+21.3%) 71.5 (+8.0%)

precision 71.4 56.4 (−21.0%) 62.6 (−12.3%)

F-score 68.7 66.3 (−3.5%) 66.7 (−2.9%)
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Table 6

A comparison between our proposed model (prob) and word transition and class transition

models on the test set (for all protein names). Numbers in parentheses indicate percentage

increase/decrease relative to prob.

evaluation criteria prob word class

recall 66.9 41.8 (−37.5%) 41.6 (−37.8%)

exact precision 60.1 41.0 (−31.8%) 48.0 (−20.1%)

F-score 63.3 41.4 (−34.6%) 44.6 (−29.5%)

recall 86.0 74.7 (−13.1%) 72.0 (−16.3%)

partial precision 77.2 73.3 (−5.1%) 83.0 (+7.5%)

F-score 81.4 74.0 (−9.1%) 77.1 (−5.3%)

recall 75.6 48.0 (−36.5%) 63.8 (−15.6%)

fragment precision 74.3 67.2 (−9.6%) 66.1 (−11.0%)

F-score 75.0 56.0 (−25.3%) 64.9 (−13.5%)
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Table 7

Results produced by probabilistic models trained on manually and automatically annotated

corpora. Numbers in parentheses indicate percentage increase/decrease relative to manual.

compound overall

evaluation criteria manual auto manual auto

recall 61.0 66.3 (+8.7%) 66.9 68.4 (+2.2%)

exact precision 57.6 51.6 (−10.4%) 60.1 57.3 (−4.7%)

F-score 59.3 58.1 (−2.0%) 63.3 62.4 (−1.4%)

recall 78.6 85.5 (+8.8%) 86.0 91.3 (+6.2%)

partial precision 74.3 66.6 (−10.4%) 77.2 76.6 (−0.8%)

F-score 76.4 74.9 (−2.0%) 81.4 83.3 (+2.3%)

recall 69.8 78.1 (+11.9%) 75.6 82.7 (+9.4%)

fragment precision 66.4 63.8 (−3.9%) 74.3 69.1 (−7.0%)

F-score 68.0 70.2 (+3.2%) 75.0 75.3 (+0.4%)
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Figure Captions

Figure 1.Framework of our proposed method for protein name identification.

Figure 2.The algorithm of word class assignment.

Figure 3.A fragment of the SWISS-PROT protein database.

Figure 4.A fragment of the PIR-NREF protein database.

Figure 5.An illustration of automatic annotation for protein names.

Figure 6.Some examples of false positives produced by the probabilistic model trained on the

automatically annotated corpus (auto).

Figure 7.The relation between recall and precision for exact match.

Figure 8.Distribution of the certainty scores computed for 326,489 protein names in

SWISS-PROT and TrEMBL.
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variables

w: input word

sw: suffix to be associated withw, which is a sequence of a vowel, one or more consonants

(if any), and either a vowel or a consonant in the ending ofw (can beNULL in case of no suffix)

cw: output word class to be assigned tow

RA: a set of frequent Roman alphabets= {alpha, beta, gamma, delta, epsilon, kappa}
RN: a set of Roman numerals= {I, II, III, IV, · · ·}
PM: a set of punctuation marks= {comma (,), period (.), colon (:), semicolon (;)}

begin

if w ∈ RA then cw := romanalpha

else ifw ∈ RN then cw := romannum

else ifw ∈ PM then cw := punctuation

else ifw is a numberthen cw := arabic num

else ifw contains capital letter(s)then cw := acronym

else ifw is composed of alphabetsthen

if sw = NULL then cw := word

else iflength(sw) ≤ length(w)/2 then cw := suffix sw

elsecw := word

elsecw := symbol

end



ID 1431 ARATH STANDARD; PRT; 267 AA.

AC P42643; Q9M0S7;

DT 01-NOV-1995 (Rel. 32, Created)

DT 01-OCT-1996 (Rel. 34, Last sequence update)

DT 15-JUN-2002 (Rel. 41, Last annotation update)

DE 14-3-3-like protein GF14 chi (General regulatory factor 1).

GN GRF1 OR AT4G09000 OR F23J3.30.

OS Arabidopsis thaliana (Mouse-ear cress).

OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta;

Tracheophyta;



<NrefEntry id="NF00000036" update date="11-Mar-2002">

<protein name>

maturase-like protein

</protein name>
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</pmid>
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<AbstractText>Several related 
<protein>cytochrome P450</protein>
cDNAs belonging to the CYP9 family 
have been cloned from the midgut of 
larval tobacco … </AbstractText>

<AbstractText>Several related 
<protein>cytochrome P450</protein>
cDNAs belonging to the CYP9 family 
have been cloned from the midgut of 
larval tobacco … </AbstractText>

PIR-NREF
DB

(cytochrome P450, 10844248)
(coat protein, 10500279)
(70kDa protein, 8578858)
(maturase-like protein, 10719003)

(cytochrome P450, 10844248)
(coat protein, 10500279)
(70kDa protein, 8578858)
(maturase-like protein, 10719003)

PubMed

extract protein names
and PubMed IDs

retrieve and annotate

……

train probabilistic models



80-kDa tyrosine beta subunit

CD40L-treated B copper cofactor

DNA-receptor genistein suppress

HPP-CFCs histidine-rich glycoprotein

K1K2-Xa nuclear chromatin

MHC class II perivascular DC migrate

RA time receptor kinase

TPA-induced transcription transcription regulatory factor
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