	別途本学所定の答案用紙						
	有	B4	1人1	枚	無		
	有	LS	1人	枚	無		
	有	マークシート	1人	枚	無		
-							

甲南大学試験用紙

試験科	目.	上級ミ	クロ経	済学 I	(2019)	(注意)
担当	者i	市野泰	和			・年次、ンで
実施日	202	0年1月	1 29 日	所要時間	60分	・答 案 ・退場

•				
•	年次、	学部、	学籍番号、	氏名は所定の欄に必ず鉛筆以外のペ
	ンで言	己入する	ること。	

・答案用紙はいかなる場合も試験場外へ持ち出してはならない。・退場の際は必ず答案用紙を提出すること。

図表 1.

Αさん

			年	次		学	部
	学籍	番号					
0/	氏	名					
0	採	点					

Βさん

協力しない

1, 9

4, 4

協力する

6, 6

9, 1

協力する

協力しない

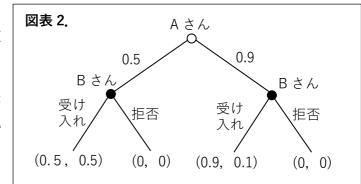
問1. 無限回繰り返しゲーム(55点)

図表 1 の利得表で表されたゲームをステージ・ゲームとする無限回繰り返しゲームを考える。 A さんと B さんの割引因子はともに δ ($0 \le \delta < 1$) としよう.

- (a) ステージ・ゲームのナッシュ均衡を求めよ. (10点)
- (b) A さんと B さんがお互いにトリガー戦略をとりあうことがナッシュ均衡になるための、 δ の下限を求めよ。(15点)
- (c) (b)で求めた下限よりも δ が小さいときには、A さんと B さんがお互いにトリガー戦略をとりあうことはナッシュ均衡にならない。「割引」「現在」「将来」という3つの言葉を使ってその理由を説明せよ。(15点)
- (d) 毎回のステージ・ゲームで{協力しない,協力しない}が起こるようなナッシュ均衡をひとつ示し,それがナッシュ均衡であることを説明せよ. (15点)

問2. 氷を分ける(15点)

A さんと B さんは氷屋さんである. 彼らは協力して山奥の湖から 1 トンの天然氷を切り出すことに成功した. この氷を山のふもとの保冷車まで運ぶ途中で,彼らは氷を二人でどう分けるか話し合う. その分け方は次のとおりである.


まず、A さんが、自分の分け前を割合sで提案する。簡単化のため、A さんが 提案できる割合sは0.5と0.9のどちらかであるとする。たとえば、s=0.9は、「私 に 9割ちょうだい、B さんに 1割あげる」という提案である。

次に、B さんは、A さんの提案を受け入れるか、それとも拒否するか、どちらかを選ぶ、B さんが受け入れた場合、A さんの提案どおりに氷は分けられ、A さ

んの利得はsトンの氷,B さんの利得は(1-s)トンの氷,となる.しかし,もしB さんが拒否した場合は,交渉決裂となり,1 トンの氷は運ばれずに道端で解けてなくなる.そのため,2 人の利得はともに0 となる.

このような氷の分け方をゲームの木で表すと図表2のようになる.

このゲームの部分ゲーム完全均衡と均衡結果, および, 均衡での A さんと B さんの利得を示せ.

問 3. 2段階の交渉で氷を分ける(30点)

問2では、一方は提案をするだけ、もう一方は受け入れか拒否を選ぶだけだった。しかし、実際には、提案を拒否した人は、次には自分から別の提案を持ちかける、ということもありうる。そこで、以下のような2段階の交渉を考えよう。

まず、第1段階では B さんが提案者になる。B さんは、A さんの分け前を割合 s_1 で提案する。B さんが提案できる割合 s_1 は、 $0.5 \ge 0.9$ のどちらかとする。ここで、B さんの提案 s_1 は A さんの分け前であることに注意しよう。たとえば、 $s_1 = 0.9$ とは、「A さんに 9 割あげる、私に 1 割ちょうだい」という B さんの提案である。B さんの提案を聞いて、A さんは、その提案を受け入れるか拒否するかを決める。A さんが受け入れれば B さんの提案どおりに氷は分けられ、A さんの利得は s_1 トンの氷、B さんの利得は $(1-s_1)$ トンの氷、となってゲームは終わる。しかし、もし A さんが拒否すればゲームは終わらず、交渉は第 2 段階に進む。

第2段階ではAさんが提案者になる。ただし、交渉が第1段階から第2段階へと進む間に、氷はいくらか解けてしまう。解けて残った 氷の割合を δ で表そう。たとえば、 $\delta=0.8$ なら、1トンの氷は20%ぶん解けて0.8トンになる。したがって、第2段階では δ トンの氷をどう分けるのかを決めることになる。

第 2 段階の提案者である A さんは、自分の分け前を割合 s_2 として提案する。A さんが提案できる割合 s_2 は、0.5 と 0.9 のどちらかとする。A さんの提案を聞いて、B さんは、その提案を受け入れるか拒否するかを決める。B さんが受け入れれば A さんの提案どおりに氷は分けられ、A さんの利得は δs_2 トンの氷、B さんの利得は $\delta (1-s_2)$ トンの氷、となってゲームは終わる。もし B さんが拒否すれば交渉決裂でゲームは終わる。氷はぜんぶ解けてなくなってしまい、 2 人の利得はともに 0 となる。

- (a) このゲームを表すゲームの木を描け. (ヒント:このゲームの第2段階の部分ゲームは、図表2と同じ形をしている.) (10点)
- (b) $\delta = 0.8$ とする. このゲームの均衡結果と、均衡での A さんと B さんの利得を示せ. (10 点)
- (c) 「第1段階でBさんは0.5を提案しAさんはそれを受け入れる」が均衡結果となるための必要十分条件を δ の不等式で示せ. (10点)